
www.manaraa.com

A Meta-Analysis of Pedagogical Tools

used in Introductory Programming Courses

by

Frances P. Trees

Submitted in partial fulfillment
of the requirements for the degree of

Doctor of Professional Studies
in Computing

at

Seidenberg School of Computer Science and Information Systems

Pace University

March 2010

www.manaraa.com

UMI Number: 3407417

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI 3407417

Copyright 2010 by ProQuest LLC.
All rights reserved. This edition of the work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106-1346

www.manaraa.com

We hereby certify that this dissertation, submitted by Frances P. Trees, satisfies the
dissertation requirements for the fegree of Doctor of Professional Studies in
Computing has been approved.

Dr. Joe Bergin

Dr. Fred Grossman

Dr. Charles Tappert

School of Computer Science and Information Systems
Pace University 2010

www.manaraa.com

Dedication

This dissertation is dedicated to the computer science teachers who work to make
education better and more accessible for all students and to the tool developers who
continue to offer computer science teachers new and innovative pedagogical tools to
add to their teaching repertoire.

www.manaraa.com

Preface

Disclaimers:

The researcher acknowledges professional contacts with many of the developers of
the tools investigated in this study.

• Joe Bergin, an author of Karel J. Robot, is the researcher’s doctorate advisor
and chair of the dissertation committee.

• The researcher has served on the Board of Directors of the Computer Science
Teachers Association (CSTA) with Steve Cooper, a member of the Alice
development team.

• The researcher is a member of the College Board Advanced Placement
Computer Science (AP CS) Test Development Committee. This committee is
the author of the Microworld, GridWorld.

• Barb Ericson, developer of the Media Computation Library, serves on the
CSTA Board of Directors and the AP CS Test Development Committee with
the researcher.

• The researcher was a member of the Java Task Force, working with Eric
Roberts, the primary developer of ACM’s Java Task Force Graphics Library.
Members of this task force also included James Cross, developer of the
jGRASP IDE, Kim Bruce, developer of the ObjectDraw Library, and Ian
Utting, member of the BlueJ and Greenfoot development teams.

• The researcher has served on the AP CS Test Development Committee and a
College Board Ad Hoc Committee for AP CS with Corky Cartwright, a
developer of DrJava.

The researcher has not been influenced by any of these relationships in the
development or presentation of this research study.

www.manaraa.com

Acknowledgements

I wish to thank my advisor, Dr. Joseph Bergin, and my advisory committee, Dr.
Fred Grossman and Dr. Charles Tappert, whose guidance and support has helped
me to become a better researcher.

I would like to acknowledge all of the tool developers that have contributed so much
to improving computer science education. You have provided a means to improve
and enhance the teaching and learning of programming.

I thank the computer science educators and researchers who helped with the
development of the survey and the teachers who contributed their valuable time to
complete the survey.

I also would like to thank those teachers and tool developers who agreed to be
interviewed for this study. It was a pleasure and an honor talking with you. Your
professional opinions and input to this study were invaluable.

And finally, I would like to thank Eli Tepperberg. You were my support throughout
the program and through this dissertation (even though it interfered with all of our
play time).

www.manaraa.com

An Abstract

A Meta-Analysis of Pedagogical Tools
Used in Introductory Programming Courses

by
Frances P. Trees

Submitted in partial fulfillment
of the requirements for the degree of

Doctor of Professional Studies
in Computing

March 2010

Programming is recognized as being challenging for teachers to teach and difficult
for students to learn. For decades, computer science educators have looked at
innovative approaches by creating pedagogical software tools that attempt to
facilitate both the teaching of and the learning of programming. This dissertation
investigates the motivations for the integration of pedagogical tools in introductory
programming courses and the characteristics that are perceived to contribute to the
effectiveness of these tools.

The study employs three research stages that examine the tool characteristics and
their use. The first stage surveys teachers who use pedagogical tools in an
introductory programming course. The second interviews teachers to explore the
survey results in more detail and to add greater depth into the choice and use of
pedagogical tools in the introductory programming class. The third interviews tool
developers to provide an explanatory insight of the tool and the motivation for its
creation.

The results indicate that the pedagogical tools perceived to be effective share
common characteristics: They provide an environment that is manageable, flexible
and visual; they provide for active engagement in learning activities and support
programming in small pieces; they allow for an easy transition to subsequent courses
and more robust environments; they provide technical support and resource
materials. The results of this study also indicate that recommendations from other
computer science educators have a strong impact on a teacher’s initial tool choice
for an introductory programming course.

This study informs present and future tool developers of the characteristics that the
teachers perceive to contribute to the effectiveness of a pedagogical tool and how to

www.manaraa.com

present their tools to encourage a more efficient and more effective widespread
adoption of the tool into the teacher’s curriculum.

The teachers involved in this study are actively involved in the computer science
education community. The results of this study, based on the perceptions of these
computer science educators, provide guidance to those educators choosing to
introduce a new pedagogical tool into their programming course.

www.manaraa.com

Table of Contents

Dedication . iii

Preface . iv

Acknowledgements . v

An Abstract . vi

List of Tables . xiii

List of Figures . xvii

Chapters

1 Overview . 1

2 Introduction . 4

2.1 Overview . 4

2.2 A Change in Pedagogy . 7

2.3 Road Map of the Dissertation . 9

3 Addressing the Use of Pedagogical Tools 11

3.1 Pedagogical Tools Overview . 11

3.2 Teaching . 16

3.3 Learning . 17

3.4 The Importance of Teacher Perceptions 19

3.5 Research Questions . 20

3.6 Limitations of the Study . 24

3.7 Significance of the Study . 24

4 Teaching and Learning: An Overview 27

4.1 Introduction . 27

4.2 Learning Styles . 28

4.3 Learning Styles and Teaching Students 35

viii

www.manaraa.com

5 Pedagogical Tools: Educational Research 39

5.1 Visualization Tools . 41

5.2 Microworlds . 44

5.3 Robots . 47

5.4 IDEs . 48

5.5 Games . 52

5.6 Libraries . 54

5.7 Summary . 59

6 Research Methodology . 62

6.1 Introduction . 62

6.2 Research Process Design . 63

6.3 Stage 1: Survey to Teachers . 66

6.3.1 Introduction . 66

6.3.2 Survey Design and Development 67

6.3.3 Subject Privacy and Confidentiality 69

6.3.4 Sampling and Subject Selection 70

6.3.5 Distribution and Response Management 71

6.3.6 Survey Piloting . 72

6.4 Stage 2: Interviews with Teachers 73

6.4.1 Introduction . 73

6.4.2 Interview Design and Development 73

6.4.3 Subject Privacy and Confidentiality 74

6.4.4 Sampling and Subject Selection 74

6.4.5 Interview Process and Response Management 75

6.5 Stage 3: Interviews with Tool Developers 76

6.5.1 Introduction . 76

6.5.2 Interview Design and Development 76

6.5.3 Subject Privacy and Confidentiality 77

ix

www.manaraa.com

6.5.4 Sampling and Subject Selection 77

6.5.5 Interview Process and Response Management 77

6.6 Summary . 78

7 Results . 79

7.1 Introduction . 79

7.2 Teacher Survey Results . 80

7.2.1 Survey Question Types . 84

7.2.2 Analysis of Rank Data . 86

7.2.3 Cross Categories Summary 87

7.2.3.1 Choosing to Use the Tool 88

7.2.3.2 Overall Tool Characteristics 89

7.2.3.3 Programming Environment, Testing, Debugging, and
Interaction . 93

7.2.3.4 Learning and Teaching 98

7.2.3.5 Auxiliary Materials and Support 101

7.2.3.6 Negative Aspects of Tool 106

7.2.4 Aggregation: Summary of the Individual Tool Categories . . 108

7.2.4.1 Choosing to Use the Tool 109

7.2.4.2 Overall Tool Characteristics 110

7.2.4.3 Programming Environment, Testing, Debugging, and
Interaction . 112

7.2.4.4 Learning and Teaching 116

7.2.4.5 Auxiliary and Support 119

7.2.4.6 Negative Aspects of Tool 122

7.2.5 Training and Experience . 123

7.2.6 Course Description and Teacher Experience 130

7.2.6.1 Course Description 130

7.2.6.2 Teacher Demographics and Experience 131

7.3 Interviews with Teachers . 132

x

www.manaraa.com

7.4 Interviews with Tool Developers . 139

8 Analysis of Results . 143

8.1 Introduction . 143

8.2 Analysis Presentation . 143

8.3 Addressing the Research Questions 145

8.3.1 What Influences the Use of Pedagogical Tools in the Introductory
Programming Class? . 146

8.3.1.1 Tool Choice . 146

8.3.1.2 Recommendations from Others 147

8.3.1.3 Teaching Experience 150

8.3.1.4 Learning the Tool 150

8.3.2 What Characteristics are Perceived by Teachers to Contribute
to the Effectiveness of the Tool(s) they Choose to Use in an
Introductory Programming Course? 152

8.3.2.1 Manageable Environment 153

8.3.2.2 Active Learning . 155

8.3.2.3 Visual Environment 156

8.3.2.4 Flexible Environment 156

8.3.2.5 Subsequent Courses 157

8.3.2.6 Programming . 160

8.3.2.7 Tool Resources . 161

8.3.2.8 Teaching . 163

8.3.2.9 Learning . 164

8.3.3 What are the Perceived Characteristics of a Pedagogical Tool
that Hinder (or get in the way of) Teaching and/or Learning
in an Introductory Programming Course? 165

9 Summary and Future Work . 167

9.1 Addressing the Hypotheses . 168

9.1.1 Pedagogical Tools and the Learning of Programming 168

9.1.2 Pedagogical Tools and the Teaching of Programming 169

xi

www.manaraa.com

9.1.3 Characteristics of Tools Used in Introductory Programming
Classes . 170

9.1.4 Characteristics of Tools NOT Used in Introductory Programming
Classes . 172

9.1.5 Choosing to Use a Pedagogical Tool 173

9.1.5.1 Information for Tool Developers and Teachers . . . 173

9.2 Related Work and Research . 176

9.3 Contribution to Knowledge . 177

9.3.1 Information for the Tool Developers 178

9.3.2 Information for the Teachers 179

9.4 Future Work . 179

Appendices

Appendix A — Pedagogical Tools Survey for Teachers 182

Appendix B — Survey Letters . 203

Appendix C — Interview Questions 207

Appendix D — Developers’ Goals and Tool Characteristics . . . 210

Appendix E — Themes . 216

xii

www.manaraa.com

List of Tables

1 Mapping of Developers’ Goals with Survey Questions (example) . . . 68

2 Tools evaluated through this survey by teachers of introductory programming
classes . 81

3 Tools chosen to be used or chosen not to be used by teachers 83

4 Top three characteristics, ranked in priority order, that are perceived
to contribute to the tool’s effectiveness as determined by the total
survey responses, the responses of the users, and the responses of the
non-users . 90

5 Top three characteristics, ranked in priority order, that are perceived
to contribute to the tool’s effectiveness as determined by the total
survey responses, the male responses, and the female responses . . . 91

6 Characteristics, in priority order, that are perceived to be inadequately
supported by the tool as determined by the total survey responses, the
responses of the users, and the responses of the non-users 92

7 Characteristics, in priority order, perceived to be inadequately supported
by the tool as determined by the total survey responses, the responses
of the males, and the responses of the females 92

8 Characteristics, in priority order, perceived to be inadequately supported
by the tool as determined by the total survey responses, the responses
of the college teachers, and the responses of the secondary school teachers 93

9 Top three ranked characteristics, in priority order, that relate to testing,
debugging, and interaction that contribute to the effectiveness of this
tool as ranked by the total survey responses, the responses of the users,
and the responses of the non-users 96

10 Top three ranked characteristics, in priority order, that relate to testing,
debugging, and interaction that are perceived to contribute to the
effectiveness of this tool as ranked by the total survey responses, male
responses, and female responses . 96

11 Top three characteristics that relate to testing, debugging, and interaction
that are perceived to contribute to the effectiveness of this tool as
ranked by total survey responses, responses of college teachers, and
responses of secondary school teachers 97

12 Characteristics, in priority order, that are perceived to be inadequately
supported by the tool as determined by the total survey responses, the
responses of the users, and the responses of the non-users 98

xiii

www.manaraa.com

13 Characteristics, in priority order, that are perceived to be inadequately
supported by the tool as determined by the total survey responses, the
male responses, and the female responses 98

14 Characteristics relating to programming environment, debugging, testing,
and interaction, in priority order, that are perceived to be inadequately
supported by the tool as ranked by total survey responses, the responses
of the college teachers, and the responses of the secondary school teachers 99

15 Characteristics that are perceived to support the learning and teaching
of programming as ranked, in priority order, by the total survey
responses, the responses of the users, and the responses of the non-users101

16 Characteristics that are perceived to support the learning and teaching
of programming as ranked, in priority order, by the total survey
responses, the male responses, and the female respondents 102

17 Characteristics that are perceived to support the learning to and
teaching of programming as ranked, in priority order, by the total
responses, the responses of the college teachers, and the responses of
the secondary school teachers . 102

18 Characteristics dealing with auxiliary materials and support that are
perceived to contribute to the effectiveness of the tool as ranked by
total survey responses, the responses of the users, and the responses
of the non-users . 104

19 Characteristics dealing with auxiliary materials and support that are
perceived to contribute to the effectiveness of the tool as ranked by
total survey responses, the male responses, and the female responses 105

20 Characteristics relating to auxiliary material and support, in priority
order, that are perceived to be inadequately supported by the tool as
ranked by total survey responses, the responses of the users, and the
responses of the non-users . 105

21 Characteristics relating to auxiliary material and support, in priority
order, that are perceived to be inadequately supported by the tool as
ranked by total survey responses, the male responses, and the female
responses . 106

22 Characteristics relating to auxiliary material and support, in priority
order, that are perceived to be inadequately supported by the tool as
ranked by total survey responses, the responses of the college teachers,
and the responses of the secondary school teachers 107

23 Reasons for initially choosing to use this tool in an introductory programming
course chosen by a majority of the responses in each tool category . . 110

xiv

www.manaraa.com

24 Characteristics relating to user interface and student interaction perceived
to contribute to the effectiveness of the tool by more than 50% of the
responses in each tool category . 111

25 Top three ranked characteristics, in priority order, that are perceived
to contribute to the tool’s effectiveness as determined by responses for
each tool category . 112

26 Top three characteristics, in priority order, that are perceived to be
inadequately supported by the tool as determined by the survey responses
evaluating Microworlds and IDEs . 113

27 Characteristics related to programming environment perceived to contribute
to the effectiveness of the tool by more than 50% of those repsonding
within each tool category . 113

28 Characteristics related to testing, debugging, and interaction perceived
to contribute to the effectiveness of the tool by the majority of the
responses in each tool category . 114

29 Top three ranked characteristics, in priority order, that relate to the
programming environment, testing, debugging, and interaction that
are perceived to contribute to the effectiveness of this tool as determined
by responses for each tool category 115

30 Characteristics, in priority order, that are perceived to be inadequately
supported by the tool as determined by responses in each tool category116

31 The characteristics that are perceived to contribute to student learning
identified by more than 50% of the responses in each tool category . 117

32 The characteristics related to the teaching of programming that are
perceived to contribute to effective teaching identified by more than
50% of the responses in each tool category 118

33 Characteristics, in priority order, that are perceived to contribute to
the effectiveness of the tool as related to the learning of and teaching
of programming as determined by responses for each tool category . 118

34 The characteristics related to auxiliary materials and support that are
perceived to contribute to effective teaching identified by more than
50% of the responses in each tool category 119

35 The characteristics related to the overall perception of the tool identified
by more than 50% of the responses in each tool category 120

36 Top three characteristics, in priority order, that are perceived to contribute
to the effectiveness of the tool as related to auxiliary materials, support,
and overall perceptions of the tool as determined by responses for each
tool category . 121

xv

www.manaraa.com

37 Characteristics related to auxiliary materials and support, listed in
priority order, that are perceived to be inadequately supported by the
tool as determined by responses for three tool categories 121

38 Characteristics related to the tool environment that are perceived
to hinder teaching or learning by those survey responses evaluating
Microworlds and IDEs . 123

39 The characteristics related to errors and support that are perceived to
hinder teaching or learning as determined by responses for each tool
category . 124

40 Type of training received in the use of the tool for each tool category 125

41 Descriptive statistics (frequency, median, mode) for the total survey
responses . 126

42 Descriptive statistics (frequency, median, mode) for the responses of
those presently using the tool . 127

43 Descriptive statistics (mean and standard deviation) for the total
survey responses . 128

44 Descriptive statistics (mean and standard deviation) for the responses
of those presently using the tool . 129

45 Mapping of Developers’ Goals with Tool Characteristics from Survey
Questions . 215

xvi

www.manaraa.com

List of Figures

1 A Simplified Version of the Kolb’s Learning Cycle 31

2 Based on Kolb’s Learning Cycle with Identified Quadrants 32

3 Graphical Illustration of Mixed Research Design (based on the illustrations
from Teddlie and Tashakkori) [212] 65

xvii

www.manaraa.com

1

Chapter 1

Overview

Today’s programming students have grown up in a world of emerging technologies.

They interact with information differently from previous generations. Researchers in

the field of computer science education have developed tools that help programming

teachers address the needs and learning styles of today’s students. These

pedagogical tools facilitate the teaching of and the learning of programming.

This research investigates the characteristics that contribute to the effectiveness of

pedagogical tools used in introductory programming courses. More specifically, this

research determines those characteristics that are common to effective pedagogical

tools used in introductory programming courses. Where past research examined a

specific tool or a specific category of tools (Microworlds, Libraries, Integrated

Development Environments, Visualization tools, etc.), this research looks at

characteristics that are common to all tools, regardless of category. The tool

characteristics investigated in this study are classified under the following major

themes:

• Manageable Environment: The tool was not difficult to use or install,

simplified the mechanics of programming, and was neither too restrictive or

too complicated for an introductory programming course.

• Active Learning: The tool supports an interactive environment where students

are actively engaged in the learning process.

• Good First Experience: Students enjoy using the tool and programming is

introduced in an enjoyable way through the use of the tool.

www.manaraa.com

2

• Visual Environment: The tool supports some form of graphical components or

visualization techniques.

• Flexible Environment: The tool engages many levels of learning and can be

used throughout the course.

• Subsequent Courses: The tool is a solid introduction to subsequent computer

science courses and allows students to transition to these courses seamlessly.

• Programming Activities: The tool provides support for programming

activities.

• Tool Resources: The developer, tool, or community, provides resources for

using the tool in an introductory programming course.

• Teaching: The tool eases and promotes the teaching of programming.

• Learning: The tool eases and promotes the learning of programming.

The results indicate that an effective pedagogical tool provides opportunities for

active learning and provides visual representations that facilitate the understanding

of programming concepts and program execution. An effective tool allows for a

flexible programming environment that addresses the needs of students of various

ability levels and learning styles and provides learning experiences that encourage

students to continue in the discipline with a seamless transitioning experience.

This study also seeks to determine the greatest influence in initially adopting a tool

to integrate into the introductory programming curriculum and the reasons the

teacher initially chooses one tool over another. The results indicate that

recommendations from other computer science educators have a strong impact on a

teacher’s initial tool choice for an introductory programming course.

www.manaraa.com

3

The results of this study, when communicated to other computer science educators,

provide information that may serve as a guide in the adoption of pedagogical tools

in an introductory programming course. The results also inform present and future

tool developers of the characteristics that the teachers perceive to contribute to the

effectiveness of a pedagogical tool and how to present their tools to encourage a

more efficient and more effective widespread adoption of the tool into the teacher’s

curriculum.

The study employs three research stages that examine the tool characteristics and

their use. The first stage surveys teachers who use pedagogical tools in an

introductory programming course. The second interviews teachers to explore the

survey results in more detail and to add greater depth into the choice and use of

pedagogical tools in the introductory programming class. The third interviews tool

developers to provide an explanatory insight of the tool and the motivation for its

creation.

The teachers involved in this study are actively involved in the computer science

education community. The results of this study, based on the perceptions of these

computer science educators, provide guidance to those educators choosing to

introduce a new pedagogical tool into their programming course and information to

those tool developers who are developing new tools or modifying existing tools.

www.manaraa.com

4

Chapter 2

Introduction

2.1 Overview

Although programming is a key objective in most introductory computing classes, it

is a skill that is both challenging for teachers to teach [91, 94, 124, 140, 200, 231]

and difficult for students to learn [18, 91, 94, 116, 149, 151, 177, 214, 225]. This

dissertation investigates the motivations for the integration of pedagogical tools in

introductory programming courses and the characteristics of these tools.

Past research on predictors of success and failure in introductory computer science

courses [19, 20, 216, 226, 227] identifies factors that could certainly help educators

select students that have the best chances for success. Selection may not be a luxury

of educators today. According to the Computing Research Association (CRA), the

number of new computer science majors in 2004 was 40% lower than in 2000 and

the percentage of incoming undergraduates among all degree-granting institutions

who indicated they would major in computer science declined by 70% between fall

2000 and 2005 [219]. Although the 2006 - 2007 CRA Taulbee Survey boasts an 18%

increase in the number of Ph.D.s awarded between July 2006 and June 2007, the

undergraduate enrollments remain unclear. The Bachelor’s degree production was

down 20% in 2006 - 2007 and the fraction of Bachelor’s degrees granted to women

dropped from 14.2% to 11.8% with many programs reporting less than 10% female

enrollment. Enthnicity is also less diverse, with White, non-Hispanics receiving

approximately 66% (up from 59.6% in 2006) of the Bachelor’s degrees being granted

in 2007 [208].

In March 2009, The NY Times [148], The Seattle Post [102], and multitudes of

www.manaraa.com

5

higher education and technical news reports boasted that for the first time in six

years, enrollment in computer science programs in the United States increased. The

number of majors and pre-majors in American computer science programs was up

6.2% from 2007. The reports referenced the most recent (2007 - 2008) CRA Taulbee

Survey in which a total of 264 Ph.D.-granting departments were surveyed. It should

be noted that Taulbee Surveys of previous years reported on departments of

computer science. Information Schools (I-Schools) that support Information (I)

programs such as Information Science, Information Systems, Information

Technology, and Informatics, were not previously included in Taulbee Survey

results. The 2007-2008 Taulbee Survey was the first time that the count included

Information-school departments. 19 of the 264 departments surveyed were I-School

departments.

Although the total Ph.D. production among the responding departments represents

a 5.7% increase in 2008, Bachelor’s degree production in computer science was down

10%, compared to a nearly 20% decline in the previous year. Diversity in computer

science undergraduate programs remains poor. The fraction of Bachelors degrees

awarded to women held steady at 11.8%. As was the case in 2007, nearly two-thirds

of those receiving Bachelors degrees were White, non-Hispanics [27].

Enrollment trends and statistics suggest that research in computer science

education might benefit by a change in the focus of the research. Where research in

the past focused on predictors of success that might be used to weed out the

students that would not succeed in computer science courses [29], those same

predictors can now be used to recruit and encourage students to pursue the field. In

the past there were more students interested in computer science than universities

could handle [91]. Today, our pool of students is smaller and more diverse. Our

pedagogy needs to change to accommodate a different programming paradigm,

www.manaraa.com

6

different learning styles, and a more diverse student population. Although the

student population and pedagogy has changed and will continue to change, the

challenge remains. Programming is still challenging for teachers to teach and

difficult for students to learn.

This dissertation is motivated by the need to investigate changes in pedagogy that

can address the challenges that teachers and students face in an introductory

programming course. In particular, this study investigates the motivations for the

integration of pedagogical tools in introductory programming classes and how

teachers perceive the effectiveness of these tools.

The primary goal of this research is to determine the characteristics that teachers

perceive to contribute to the effectiveness of the tools, thereby easing and promoting

the learning and teaching of programming. A secondary goal of this research is to

examine the reasons that teachers choose to use (or choose NOT to use) pedagogical

tools in their introductory programming courses.

Past studies have presented anecdotal evaluations of specific tools [117, 199, 224],

analytic studies that examine a tool and its conformance to a certain set of criteria

[85], and empirical studies that present quantitative or qualitative results about an

individual characteristic of specific tools [86, 100, 160, 184].

This research is different. Where past research examined a specific tool or a specific

category of tools, this research looks at characteristics that are common to all tools,

regardless of category. This research also provides an added dimension to the

already existing research results by placing an emphasis on the teachers’ perceptions

of the pedagogical tools chosen to be integrated into introductory programming

courses. Pedagogical tools are innovations developed with the goals of making

programming more accessible and of easing the learning of programming

www.manaraa.com

7

[6, 28, 108, 109]. The influence of perception on use has considerable support in the

literature [146]. Perceived ease of use and perceived usefulness are characteristics

that have been studied in the acceptance of technological innovations for the past

three decades [81, 146, 195]. This research investigates the perceptions that

programing teachers have about pedagogical tools chosen to be used in their

classrooms. The purpose of this research is twofold. First, the results inform present

and future tool developers of the characteristics that are important to the teacher

and how to present their tools to encourage a more efficient and more effective

widespread adoption of the tool into the teacher’s curriculum. Second, the results

offer information to teachers looking to adopt a pedagogical tool in an introductory

programming class.

The perceptions gathered in this study are those of computer science educators that

are actively involved in the computer science education community. They are most

likely at a high level of involvement in professional conferences, discussion groups,

and professional development activities.

2.2 A Change in Pedagogy

Teachers of introductory programming courses are confronted not only with

decreasing enrollments but also with declining retention rates of the students that

do enroll in their courses. In more recent years the blame has fallen on the trend

towards object-oriented programming [3, 32, 50, 138, 141, 220]. The language shift

to Java sparked a discussion on the Special Interest Group on Computer Science

Education (SIGCSE) mailing list that raised issues on how to teach this

programming paradigm. Discussions on objects early verses objects late led to a

reaction of educators who have successfully implemented the objects-early approach

with the use of software tools or libraries. These educators encouraged other faculty

to experiment with pedagogical IDEs, special libraries providing useful classes, or

www.manaraa.com

8

microworlds [32]. Although there was insufficient data to evaluate the effectiveness

of the tools in teaching introductory courses, the perception of being successful

played an important role in the instructors use and promotion of the individual

pedagogical tools. Kim Bruce, an author of the ObjectDraw library, concluded the

summary of the SIGCSE discussion: “It would help if a group of experts in

educational research were to design experiments that will allow faculty to examine

the success of the innovative approaches proposed for teaching Java in CS1 [32].”

In describing the BlueJ system and its pedagogy, Michael Kölling, et.al.

hypothesized that “teaching object orientation is not intrinsically more complex,

but that it is made more complicated by a profound lack of appropriate tools and

pedagogical experience with this paradigm and that many teachers experience

serious problems when teaching object orientation but many of the problems could

be overcome or reduced through the use of more appropriate tools [124].”

Since the 1970s, computer science educators have looked at innovative approaches

by creating pedagogical software tools that attempt to facilitate both the teaching

of and the learning of programming [231]. But the development of these tools does

not in itself make teachers teach better or students learn more easily. The

appropriate pedagogical tools must be chosen for the task and then the tool must be

successfully integrated into the curriculum. Teachers are the most influential factor

and the connecting link between the pedagogical software and the students

[165, 135]. But how does the teacher learn about the tools? What types of

pedagogical tools do the teachers perceive as contributing to the effectiveness in the

learning of and the teaching of programming? What makes a tool successful? Do

these successful tools share common characteristics?

Even though teachers are the keys to making learning happen and improving

instruction, the educational research community offers little information on what

www.manaraa.com

9

affects the teachers’ adoption of educational innovations [165].

This dissertation addresses these questions with multiple sources of data in three

research stages. The first surveys teachers who use pedagogical tools in an

introductory programming course to identify the tools most commonly used and to

explore the characteristics that are common to these tools. The second explores the

survey results in more detail through interviews with teachers that use, have used,

or consciously choose not to use tools in their programming courses. This provides

more detailed information on the reasons for the use (and non-use) of the tools and

adds depth to the survey results. Finally, to provide an explanatory insight of the

tool and the motivation for its creation, interviews with tool developers of some of

the more popular tools were conducted.

2.3 Road Map of the Dissertation

The organization of the remaining chapters in this dissertation is as follows:

Chapter 3 (Addressing the Use of Pedagogical Tools) discusses the motivation and

purpose of this research, the research questions, the limitations and the significance

of this research.

Chapter 4 (Teaching and Learning: An Overview) provides a literature review that

addresses the state of computer science education, student learning styles, and

teaching methodologies, as they relate to pedagogical tools and this research study.

Chapter 5 (Pedagogical Tools: Educational Research) discusses past research on the

specific tools or categories of tools.

Chapter 6 (Research Methodology) identifies the methodology employed in this

study and describes the three research stages that examine the characteristics and

use of the pedagogical tools. The first stage surveys teachers who use pedagogical

www.manaraa.com

10

tools in an introductory programming course. The second interviews teachers to

explore the survey results in more detail and to add greater depth into the choice

and use of pedagogical tools in the introductory programming class. The third

interviews tool developers to provide an explanatory insight of the tool and the

motivation for its creation.

Chapter 7 (Results) summarizes the data and presents the results from teacher

surveys, interviews with teachers, and interviews with tool developers.

Chapter 8 (Analysis of Results) discusses the research data and suggests some

explanations for the results. It explores the commonalities and differences of the

tool characteristics. In addition, the comments from the respondents in stages two

and three are incorporated into the analysis to provide further insight and support

of the findings.

Chapter 9 (Summary and Future Work) presents responses to this study’s research

questions, gives the value of this research, and provides suggestions for further work

in this area.

The Appendices contain the actual survey administered to the teachers, email

correspondences about the survey, the interview questions posed to the teachers, the

interview questions posed to the tool creators, a mapping of the tool developer’s

goals to the interview and survey questions, and a tabulation of the common themes

that surfaced as a result of the surveys and interviews.

www.manaraa.com

11

Chapter 3

Addressing the Use of Pedagogical Tools

3.1 Pedagogical Tools Overview

For the past five decades, researchers have developed pedagogical tools with the

goals of making programming more accessible and of easing and promoting the

learning of programming. While there are a considerable number of software tools

that have been developed to achieve these goals, many teachers struggle with

finding and evaluating the existing tools, identifying the tools that are still being

maintained, and keeping up with new changes and tool developments [22]. In

computer science education, pedagogical tools are designed to contribute positive

experiences for novice programmers. Tool developers implement a variety of

approaches in designing pedagogical tools to achieve this outcome. Most recently,

tools are emerging as new features in existing tools or as the combinations of

features of existing tools [178]. As examples, Storytelling Alice is a modified version

of Alice that better supports girls in creating animated stories [115] and Greenfoot

is a combination of object interaction (BlueJ) and object visualization (microworlds

such as Karel the Robot) [82].

Research is about learning [70]. Researchers who are developing new tools can learn

from the extensive collection of existing tools and the motivations that teachers

have when adopting tools. This research addresses the teachers’ motivations for

choosing to use pedagogical tools in the introductory programming class.

Although a myriad of research projects have been devoted to tool development, only

a small percentage of these tools are being successfully disseminated and

implemented by the teachers in introductory programming classes. Guzdial suggests

www.manaraa.com

12

that “the greatest contributions to be made in this field (computer science

education) are not in building yet more novice programming environments but in

figuring out how to study the ones we have [70].” A followup suggestion might be

that the greatest contributions to be made in this field are studying the tools that

we have through the eyes of the teachers using the tools before we build yet more

new novice programming environments.

Since the teacher chooses to use (or not to use) a pedagogical tool in an

introductory programming class, the developer’s ability to disseminate and promote

information about the tool is an important component for its widespread adoption.

Palak and Walls cite numerous studies that confirm that the teachers’ beliefs guide

pedagogical decisions and actions taken in the classroom [169]. Their research

suggests that any inquiry into classroom practices should involve an investigation of

the teachers’ beliefs. Teachers are key agents of change and it is the teachers’ beliefs

and perceptions that influence their choices in the classroom [168, 169]. This study

investigates the teachers’ perceptions of the characteristics that contribute to a

tool’s effectiveness and the motivations for integrating the tool into their curriculum.

For the purpose of this research, the tools will be classified into different categories.

Included here is a brief explanation for each category in order to clarify the way in

which the categories are referenced throughout this dissertation.

• Microworlds: A microworld is a learner-centered world that is explored by

directly manipulating objects in the world with a limited set of simple

commands [86]. More generally described by Latour, “A microworld is a tiny

world inside which a student can explore alternatives, test hypotheses, and

discover facts that are true about that world [128].” Microworlds provide

metaphors where storytelling can occur. Examples of microworlds referenced

in this study include Alice [6], Greenfoot [82], GridWorld [83], Jeroo [108], and

www.manaraa.com

13

Karel[24].

• Visualization tools: Visualizations are graphical displays of information.

Program visualizations consist of different graphical objects (often animated)

and textual objects visualizing the execution of programs [184]. Visualization

technology aims to help students understand how algorithms work in order to

ease the problems of learning to program [126]. Examples of visualization

tools referenced in this study include Jeliot 3, a program visualization

application that visualizes how a Java program is interpreted [107] and

jGRASP, a tool providing automatic generation of control structure diagrams

for code visualization, UML class diagrams for architectural visualization, and

viewers for dynamic views of primitives and objects [109]. Whereas BlueJ

offers static visualization of objects, Jeliot 3 and jGRASP offer dynamic

visualization techniques. RAPTOR is an iconic programming environment,

designed specifically to help students visualize classes and methods and limit

syntactic complexity. RAPTOR programs are created visually using a

combination of UML and flowcharts [38].

• Integrated Development Environments (IDEs): An integrated development

environment is a software application that provides several utilities for

programmers and software developers packaged into one bundle. This bundle

usually includes a source code editor, a compiler or interpreter, automated

building tools, and a debugger. Most IDEs provide a way to assist students in

writing correct syntax in a language in which they may not be proficient,

provide a simple interface to the language compiler, flag any syntax errors,

and include a mechanism for running a program [188]. Some IDEs were

specifically designed for introductory programming classes providing a simple,

unintimidating environment with an interactive interface [7, 28, 188].

www.manaraa.com

14

Examples of IDEs referenced in this study are BlueJ [28], DrJava [61],

DrScheme [62], Eclipse [64], Greenfoot [82], JCreator [106], jGRASP [109],

and Netbeans [163].

• Robots: In the context of this study, robots refer to the LEGO

MindstormsTMsystem. This system extends the traditional Lego bricks with a

central control unit (the RCX) as well as motors and various kinds of sensors

[121]. The robots can be programmed to explore an environment, detect

obstacles and lights, and solve simple problems [94]. Another example cited in

this study is Robotran, a multibody modeling at UCL-CEREM which is

entirely based on Matlab/Simulink [193].

• Game Making Software: This study references the Game Maker development

software available through YoYo Games. The software involves drag-and-drop

actions to program, has a very short learning curve, and does not require prior

programming experience [185]. The games include backgrounds, animated

graphics, music, and sound effects [77].

• Libraries: In the context of this study, libraries refer to collections of Java

tools that are designed to make programming easier for novices. These

collections provide simplified features (e.g. GUI components) or provide rich

collections of classes that are easily used by novices [32]. Libraries referenced

in this study include ObjectDraw [166], the ACM Java Task Force Library

[104], Java Power Tools [103], and the Media Computation Library [152].

• Miscellaneous: This category includes those types of tools that teachers

perceive contribute to improved teaching and/or learning but do not fall into

any of the above categories. Examples cited in this study include JavaBat, a

free online Java programming practice site [105] and JUnit, a testing

framework for the Java programming language [112].

www.manaraa.com

15

These categories are not meant to be exhaustive or mutually exclusive. Certainly,

one tool can cross over into several categories and some tools do not fit into any of

the specific categories and will be treated separately. Some tools are specifically

designed for a learning environment and others are developed primarily for a

professional environment but are introduced in an educational setting.

For a pedagogical tool to be classified, or even perceived, as successful or

unsuccessful, the tool must be used by teachers in their classrooms. In order for this

to happen, the dissemination of information about the tool is important. This

researcher’s personal experience teaching workshops for programming teachers has

confirmed that many pedagogical tools appropriate for introductory programming

classes are not used because the teachers either have not heard of the tool, they do

not know enough about the tool to integrate it into their curriculum, they do not

know where to look for information and resources, or they simply do not have time

to develop a curriculum that integrates the tool. Past studies confirm that teachers

resist learning and using new methodologies [135, 184], that time constraints are

blamed for teachers resisting the integration of new technologies into their

curriculum [135, 231], and that teachers tend to teach what they feel most

comfortable with [32].

This study investigates the teachers’ perceptions of the effectiveness of pedagogical

tools that they have chosen to incorporate into their programming courses and the

motivation behind their choices. The study is not designed to measure effectiveness

of student outcomes but rather to determine the characteristics common to those

pedagogical tools that are perceived by the teachers to contribute to the

effectiveness of the tool. The teachers involved in this study are subject matter

experts and are the key to making learning happen. By examining their

perceptions, an insight into their motivations in choosing to use certain tools and

www.manaraa.com

16

choosing not to use others is obtained.

The use of pedagogical tools takes place in a classroom where teachers and students

interact. In the computer science classroom, the learning environment should

nurture the connection between the teacher and the student and ease and promote

the teaching of and learning of programming. If this environment includes a

pedagogical tool that was consciously adopted by the teacher, the motivations

around its adoption contribute to the establishment of the learning environment.

This study investigates the teachers’ motivations for adopting pedagogical tools in

the introductory programming environment.

3.2 Teaching

Within most educational systems internationally, the task of ensuring that

pre-college teachers are adequately and appropriately prepared to teach a given

discipline at a specified educational level rests with the bodies responsible for

teacher certification [55]. For K-12 teachers of computer science, however, there are

no consistent requirements regarding knowledge of the content area (computer

science) or knowledge of pedagogical approaches to teaching computer science.

Therefore, there is no motivation to ensure adequate preparation of the computer

science teachers. In the colleges and universities in the United States there are no

prerequisites for teaching that would expose faculty to teaching methodologies or

field experience. Very few schools of education (if any) provide methods courses for

prospective computer science teachers [55] because there is no national teacher

certification in computer science. There is no blueprint that outlines a process for

exposing teachers to techniques and tools that could help them become successful,

effective, innovative computer science teachers.

Programming is an art that includes problem solving skills and effective strategies

www.manaraa.com

17

for program design and implementation as well as the knowledge of programming

tools and languages [5]. Although The Association of Computing Machinery (ACM)

Educational Council is in the process of creating a new website, “Technology that

Educators Hail (TECH),” that is intended to provide a central, organized collection

of links to ready-for-prime-time technology resources [78], there are presently no

such repositories of pedagogical tools that teachers can visit with the intention of

finding a tool that is effective and appropriate for their teaching environment.

There is presently no rating system or ranking of the tools available so that the

teacher can distinguish between an effective and an ineffective tool and the reasons

for the tool’s rating.

Of course, tools are just learning/teaching aids. It is necessary to consider

educational issues when deciding to use these technical aids. However good the

materials are, they can still be used either effectively or ineffectively [5]. Teachers

that choose to use pedagogical tools in their introductory programming courses do

so for reasons. By investigating the perceptions of teachers using tools in

introductory programming classes, this study identifies the reasons behind the

adoption of the tools by the teachers.

3.3 Learning

Computer science education is not just about the teacher or the teaching.

Computer science education is strongly based upon the higher tiers of Bloom’s

cognitive taxonomy, as it involves design creativity, problem solving, analyzing a

variety of possible solutions to a problem, collaboration, and presentation skills [55].

Learning to program is generally considered hard

[18, 91, 94, 116, 149, 151, 177, 214, 225], and programming courses have generally

experienced high dropout rates [15, 39, 47, 91, 118]. Learning to program is not a

one-step process. It involves several activities, e.g., learning the language features,

www.manaraa.com

18

program design, and program comprehension [5].

In recent years, computer science educators have argued that “the introductory

course is so critical that students may be hopelessly lost if they do not have the

right kind of experience from the start [213]”. Engaging students is critical to deep

learning [91] and today’s learners are motivated in ways unlike any other generation.

They are called the “Nintendo Generation,” having grown up immersed in a world

of technologies and computers [91, 158, 205]. They play video games; they listen to

music on digital compact disks; they help their parents program the computerized

controls of digital media players; their primary method of communication is via

text-messaging and social networks. These experiences have given our students a

different way of interacting with information compared with previous generations

[190].

Traditional methods of teaching with the blackboard and a piece of chalk will not

entice this Nintendo generation. Traditional methods of engagement have been

replaced by active learning experiences where the introductory programming

student uses a workbench to independently create and test objects [28], or creates

stories using 3-dimensional worlds [6], or visualizes how a Java program is

interpreted where method calls, variables, and operations are displayed on a screen

as the animation goes on, allowing the student to follow the step by step the

execution of a program [107].

For students to achieve better comprehension of programming and to enhance

understanding of programming concepts, researchers have designed and developed a

myriad of pedagogical tools. The variety and number of teaching technologies has

grown tremendously over the past decade. Today, effective education involves more

than simply well-structured formal lectures in the classroom. Research has shown

that students learn best when actively engaged in the learning process [30, 42, 202].

www.manaraa.com

19

This is enough of an impetus for every computer science teacher to create a learning

environment that supports active engagement. Including the appropriate

pedagogical tools as part of a teaching repertoire can facilitate active learning.

This study investigates the teacher’s perception of the characteristics of pedagogical

tools as they relate to student learning.

3.4 The Importance of Teacher Perceptions

Teachers are key agents of change and it is the teachers’ beliefs and perceptions that

influence their choices in the classroom [168, 169]. Manns investigated factors

affecting the adoption and diffusion of innovations. Her research cites multiple

sources dealing with the importance of perceptions in the adoption of an innovation

[146]. “The [individuals’] perceptions of the attributes of innovations, not the

attributes as classified by experts or change agents, affect its rate of adoption” [195].

Manns’ work followed the work of Kishore, Iivari, Green, and Brancheau, who, when

investigating the influences on innovation use, considered individuals’ perceptions of

the variables under investigation, rather than the attributes of the variables as

potentially defined by others [146].

This study follows a similar approach by investigating the teachers’ perceptions of

the characteristics of pedagogical tools used in introductory programming classes

rather than to investigate the individual characteristics in an empirical study. The

results provided from this study add a dimension that has not yet been addressed

fully by past research. As discussed in Chapters 4 and 5, past studies have

presented analytic studies that examine a tool and its conformance to a certain set

of criteria, anecdotal evaluations of specific tools, empirical studies that present

quantitative or qualitative results about an individual characteristic of specific tools.

This research is different. Where other studies are limited to investigating one

www.manaraa.com

20

specific tool or one category of tools, this study examines the characteristics that

teachers perceive to contribute to the effectiveness of a tool, regardless of category.

The results of this study provide information to present and future tool developers

about the characteristics that are important to the programming teacher and how

to present their tools to encourage a more efficient and more effective widespread

adoption of the tool into the teacher’s curriculum.

Past research on acceptance of technological innovations has confirmed that

communication sources have the power to alter individual perceptions [146] and that

perceptions of the attributes of innovations affect its rate of adoption [195]. The

results of this study, when communicated to other computer science educators,

provide information that may serve as a guide in the adoption of pedagogical tools

in an introductory programming course.

3.5 Research Questions

Different techniques that have been implemented for evaluating pedagogical tools

include anecdotal approaches, analytic techniques, and empirical evaluations

[86, 100].

Many studies present anecdotal evaluation by having the tool developers discuss

what effects they have observed when using this tool in their classes or what

teachers and/or students have reported about the use of the tool. Such studies

include work done by Sanders with Jeroo [199], work done with image processing

libraries at Swarthmore College [224], and work done with Alice [117].

Analytical studies examine tools investigating a specific aspect or set of criteria of

the tool with the goal of evaluation. Given an accepted set of criteria, evaluation is

largely by direct inspection and inference [85]. The aim is to provide an assessment

while avoiding the overhead of extensive empirical data collection. “Effectiveness, in

www.manaraa.com

21

this case, boils down to usability–the fewer usability problems defined, the more

effective the tool [100].” Gross describes an interpretive framework for evaluating

novice programming environments and the use of this framework in evaluating the

BlueJ IDE [85].

Empirical studies present quantitative and/or qualitative observational data and

then analyze and transform the data into statements that make references about the

tools [86, 100]. This type of study has been done with several categories of

pedagogical tools answering questions such as “Is there any difference in learning

when previous programing experience is taken into account? (Is the effect of the

tool the same for novice and experienced students?) [184]” and “Does exposure to

this tool increase the retention of students into the next course (CS2)? [160].”

Finally, there are summaries of the different techniques citing studies that exemplify

each type [86]. But in most cases, the research involves one specific tool or one

category of tools.

Studying individual pedagogical tools is no longer sufficient. The rate of

technological advancement mandates a different, more comprehensive approach.

More benefits result from determining the characteristics of any successful tool

regardless of the tool or the category to which that tool belongs. In general, what

characteristics contribute to the effectiveness of a successful tool in the eyes of the

teachers?

There is significant research that is specific to teaching and learning programming

[5, 20, 37, 39, 127, 131, 140, 187, 197, 214, 223, 225, 227]. Research done by

Caspersen [39] supports the hypotheses that revealing the programming process to

novices eases and promotes the learning of programming and that teaching skills as

a supplement to knowledge promotes the learning of programming. His work focuses

www.manaraa.com

22

on the foundations of learning theory for programming education, the indicators of

success for learning and performance in introductory programming, and methods to

educate novices in the skills of programming.

This study adapts Caspersen’s hypothesis by investigating the perceptions of the

teachers of introductory programming classes who use pedagogical tools to ease and

promote the teaching and learning of programming. Visualizing an algorithm,

watching an object’s behavior in a microworld, and directly manipulating the state

of an object are all ways of revealing the programming process with the use of the

appropriate pedagogical tool.

This study focuses on the perceptions of teachers and proposes the following

hypotheses based on the teachers’ perceptions:

1. Using pedagogical tools in introductory programming classes eases and

promotes the learning of programming.

2. Using pedagogical tools in introductory programming classes eases and

promotes the teaching of programming.

3. Effective pedagogical tools used in introductory programming classes have

common characteristics.

4. Tools that teachers consciously choose NOT to use in introductory

programming classes have common characteristics.

5. Teachers initially choose to use a pedagogical tool because of a perceived

task-technology “fit.”

This study investigates the characteristics of tools that are perceived by teachers to

contribute to the tool’s effectiveness with a goal of determining the characteristics

that are common to successful tools. As examples: Does Karel J. Robot (a

www.manaraa.com

23

microworld) share characteristics with ObjectDraw (a library) that influence (or fail

to influence) the tool’s effectiveness? Do programming teachers choose to teach

Alice (a microworld) for the same reasons they choose to use BlueJ (an IDE)? Does

GameMaker (Game Making Software) share characteristics with Lego MindStorms

(Robots) that ease and promote learning programming?

The following research questions shaped this study:

1. What influences the use of pedagogical tools in the introductory programming

class? Specifically, what is the primary reason a teacher chooses to use a

particular tool in an introductory programming class?

2. What are the perceived characteristics of an effective pedagogical tool used in

an introductory programming course (effective is defined as: eases and

promotes the teaching and/or learning of programming)?

3. What are the perceived characteristics of a pedagogical tool that hinder (or

get in the way of) teaching and/or learning in an introductory programming

course?

In an effort to address the hypotheses and to begin answering these research

questions, this study examines the responses of teachers through an on-line survey

administered between February 4, 2009 and April 2, 2009. Further information was

collected from a subset of these teachers through phone interviews. Through these

interviews, data pertaining to the underlying motivations and implications of using

tools were collected. Insight into the motivation of tool developers in the design,

development, and deployment of their tool was collected through in-person or phone

interviews with several of the tool developers. Chapter 6 details the research

methodology used in this study.

www.manaraa.com

24

3.6 Limitations of the Study

This study does not represent a random sampling of teachers. The teachers

participating in the survey satisfied one or more of the following criteria:

1. Participated as a reader for the Advanced Placement Computer Science (AP

CS) Examination in June 2008 and expressed a willingness to participate in

this study

2. Is a member of the AP CS Electronic Discussion Group (AP CS EDG)

3. Was an attendee at SIGCSE 2009

4. Was a participant in a teacher workshop or summer institute presented by this

researcher between 2003 and 2008

The results of this study provide perceptions of a limited population of introductory

programming teachers. The teachers surveyed are most likely at a higher level of

professional involvement in professional conferences, professional development

workshops and activities, and discussion groups focusing on computer science

education. The responses of the sample were not taken to generalize to the

population but rather to acquire in-depth information from those who are in a

position to give it [19]. The teachers involved in this study are knowledgeable

computer science educators actively involved in the computer science education

community.

3.7 Significance of the Study

The significance of this study is the information that the results provide to tool

developers about teacher perceptions of effective pedagogical tools and to teachers

selecting and evaluating tools to use in their programming classes. Previous studies

involve one specific tool or one category of tools. Studying individual pedagogical

www.manaraa.com

25

tools is not sufficient. Technology is constantly changing. Good pedagogical tools

come and go to fit with the technologies of the time. Existing tools will continue to

be improved and new tools will continue to be developed.

Although the results from past studies provide meaningful information about a

single tool, or a category of tools, more benefits will result from investigating the

characteristics of any successful tools regardless of the tool or the category to which

that tool belongs.

An effective pedagogical tool enhances and promotes teaching and/or learning. This

study provides information on the characteristics that teachers perceive to

contribute to the effectiveness of pedagogical tools used in introductory

programming classes. The educators involved in this study are most likely at a high

level of professional involvement and provide valuable information. Their

perceptions are based on their experiences using these tools.

In addition, this study aims to shed light on the reasons that teachers choose to use

(or not to use) tools in their classes and the reasons behind these decisions. Past

research on acceptance of technological innovations has confirmed that

communication sources have the power to alter individual perceptions [146] and that

perceptions of the attributes of innovations affect its rate of adoption [195]. This

study informs present and future tool developers about the teachers’ perceptions

and of how best to present their tools to encourage a more efficient and more

effective widespread adoption of the tool.

The results of this study also provide information to teachers when deciding to

integrate new tools into their curriculum. This research is based on the responses of

teachers using pedagogical tools in introductory programming classes. These

teachers are content experts and most likely at a higher level of professional

www.manaraa.com

26

involvement in professional conferences, professional development workshops and

activities, and discussion groups focusing on computer science education. The

perceptions they offer are based on experience in the classroom.

The results of this study provide information about tool characteristics that are

perceived to be important to these teaching experts. Communication of these

results have the power to alter individual perceptions [146] and could serve as

guidelines for teachers when choosing tools to incorporate into their programming

courses thus affecting the rate of the tool adoption [195] and acceptance in the

computer science education community.

www.manaraa.com

27

Chapter 4

Teaching and Learning: An Overview

4.1 Introduction

Programming is a difficult skill to learn [18, 91, 94, 116, 149, 151, 177, 214, 225] yet

learning to program is a primary goal in many introductory computer science

courses. Leaders in the field of computer science education argue that the

introductory course is so critical that students may be hopelessly lost if they do not

have the right kind of experience from the start [213]. A negative experience can

easily discourage novices from continuing in computer science and encourage them

to pursue other fields of interest. This study investigates characteristics of

pedagogical tools perceived by teachers to contribute to a positive first experience in

the introductory programming class, making learning to program easier, more

enjoyable, more understandable, and more appealing.

Introductory programming classes are smaller and more diverse than they were

three decades ago. In addition to those students who are declared majors,

computing educators attempt to attract and retain able students who have the

ability to succeed in the field of computer science but are more likely to select other

options. Sheila Tobias coins these students as “second tier” students [215]. Tobias

defines “second tier” students as students not pursuing science in college for a

variety of reasons [215]. These students are, by no means, second rate students or

students incapable of learning science. Although Tobias generalizes her study to

introductory science courses (physics, chemistry, mathematics), the situation is

similar when we consider introductory computer science courses. Introductory

computer science courses include many capable students that choose not to pursue

computer science for a variety of reasons.

www.manaraa.com

28

Many research studies on predicting success in introductory programming courses

confirm that math and science ability contributes positively to success

[26, 35, 110, 198, 227]. Many other studies investigate the relationships among

learning styles and success in computer science [34, 69, 76, 214, 227]. Introductory

programming classes include students with a variety of learning styles and a wide

range of mathematical abilities. To accommodate different learning styles and a

more diverse student population, all students, including these “second tier”

students, should be welcomed into the computer science classroom, encouraged to

participate in the activities, and offered a chance for success.

The educator’s goal should be to demonstrate that computer science is not only for

the student who thrives on math and science but can also be attractive to the

student who is presently choosing other options. To help reach this goal, many

programming teachers incorporate pedagogical tools into their curriculum with

hopes of attracting and retaining students in their courses. Most of these

pedagogical tools are designed with a goal of making learning to program easier,

more enjoyable, more understandable, and more appealing. [135, 202].

This research study focuses on the characteristics of the tools that are common

across categories and how these characteristics help ease and promote the teaching

of and learning of programming. The results of this study are based on the

perceptions of teachers, the most influential factor and the connecting link between

the tools and the students in the class. The results identify the characteristics of the

tools that address a population of students that includes the “second tier” students.

4.2 Learning Styles

People learn in different ways. There are many learning theories, categorizations of

learning styles, and patterns of learning. The two learning style models that are

www.manaraa.com

29

most commonly referred to in computer science education research are the

Felder-Silverman Learning Style Model [8, 131, 214, 232] and Kolb’s Learning Style

Model [8, 34, 80, 120, 137, 179, 233].

The Felder-Silverman Learning Style Model classifies students according to four

dimensions [214]:

• active learners (learn by trying things out, working with others) ←→ reflective

learners (learn by thinking things through, working on their own)

• sensing learners (concrete, practical, oriented toward facts and procedures)

←→ intuitive learners (conceptual, innovative, oriented toward theories and

meanings)

• visual learners (prefer pictures, diagrams, flow–charts) ←→ verbal learners

(prefer written or spoken explanations)

• sequential learners (learn in incremental, orderly steps) ←→ global learners

(holistic, learn in large leaps)

• inductive learners (prefer explanations that move from the specific to the

general) ←→ deductive learners (prefer explanations that move from the

general to the specific)

Felder notes that for at least the past decade, engineering instruction has been

biased heavily towards the intuitive, verbal, deductive, reflective, sequential learning

styles, yet few students fall into all of these categories [67]. Work done by Thomas

with software engineering students confirms this [214]. Although a study conducted

by Allert at the University of Minnesota Duluth did not find any significant

relationship between performance and learning style in the sensing-intuitive

dimension and the sequential-global dimension, the study did confirm that reflective

www.manaraa.com

30

and verbal learners experienced more success in CS1 and CS2 courses than did those

students classified as active or visual learning styles [8]. The learning style

dimensions of this model are continua and not either/or categories. A student’s

preference on a given scale (e.g. for inductive or deductive presentation) may be

strong, moderate, or almost nonexistent, may change with time, and may vary from

one subject or learning environment to another [67].

The second common learning assessment tool used in science, engineering, and

computer science is Kolb’s Learning Style Model and is based on the premises that

learning is a four stage cycle involving four adaptive learning modes [34]:

• concrete experience (learning through feeling)

• reflective observation (learning through watching and listening)

• abstract conceptualization (learning through thinking)

• active experimentation (learning through doing)

Kolb’s learning behaviors are based on two dimensions: perception and processing.

Along the perception dimension, there will be a preference between concrete

experience (looking at things as they are without change) and abstract

conceptualization (looking at things as concepts and ideas after internal processing).

The processing dimension is a continuum between active experimentation (taking a

conclusion and trying it out to prove that it works) and reflective observation

(taking a conclusion and watching to see if it works). Each individual’s learning

behavior is based on these continua.

Kolb’s learning theory views learning as a cyclic process and is based on the

proposal that learning originates in concrete experience. Learning depends on

experience but also requires reflection, developing abstractions, and active testing of

www.manaraa.com

31

Figure 1: A Simplified Version of the Kolb’s Learning Cycle
[44]

these abstractions [233]. Learning to program involves several activities, e.g.,

learning the language features, program design, and program comprehension [5] and

the programming student visits all four quadrants, depending on whether a student

is trying to solve a problem, applying skills, or understanding and identifying the

relationship between concepts [34]. Different learning styles come to play at

different times during the programming process.

The learning cycle is usually entered starting with “Why” to motivate the material

and also give Felders global learner the “big” picture. This motivation is linked to

the concrete and reflective quadrant. Then the cycle progresses clockwise through

the quadrants. “What” follows where definitions which are abstract and require

reflection are presented. This kind of material appeals to the sensing learner in

www.manaraa.com

32

Felders model. Then “How” demonstrates how the theory can be applied which

involves active learning. Fedler’s intuitive learners are more comfortable here than

they were in the previous quadrant. Finally the cycle ends with “What if” which

links to the next topic in the course [76]. This allows the student to synthesize and

evaluate the current topic.

Figure 2: Based on Kolb’s Learning Cycle with Identified Quadrants
[119]

Kolb’s Learning Style Inventory Technical Specifications states that educational

experiences shape one’s learning style by instilling positive attitudes toward specific

sets of learning skills and by teaching students how to learn [120]. Although

teachers can not force a particular learning style on a student, learning styles are

influenced by experiences in the classroom. Early education teachers have the

opportunity to guide the student to (or away from) a particular learning style, a

preference to one quadrant over the others.

Introducing computing in the elementary grades provides an opportunity for

educators to eliminate the “second tier” concept by addressing all learning styles

and instilling positive attitudes toward the computing disciplines. The visual

www.manaraa.com

33

environments that many computing pedagogical tools provide may contribute to

addressing the different learning styles. This study investigates pedagogical tools as

perceived by the teachers of introductory programming and the characteristics of

these tools that ease and promote the learning of programming for students of all

learning styles.

Kolb defines four learning styles [119], one for each quadrant created by the

processing and perceiving axes (see Figure 2).

• Divergers take experiences and think deeply about them, diverging from a

single experience to multiple possibilities. They like to ask “Why,” starting

from details to constructively work up to the big picture. They enjoy

participating and working with others. They like to learn with hands-on

exploration that leads to discovery. Students interested in Arts, English,

History and Psychology are comfortable in this quadrant.

• Assimilators prefer to think than to act. They ask “What is there I can

know?” and like organized and structured understanding. They prefer lectures

for learning, with demonstrations where possible, and will respect the

knowledge of experts. They will also learn through conversation that takes a

logical and thoughtful approach. They often have a strong control need and

prefer the clean and simple predictability of internal models to external

messiness. The best way to teach an assimilator is with lectures that start

from high-level concepts and work down to the detail. They like to stay

serious. Students who enjoy Mathematics and Physical Science are

comfortable in this quadrant.

• Convergers think about things and then try out their ideas to see if they work

in practice. They like to ask “how” about a situation, understanding how

things work in practice. They like facts and will seek to make things efficient

www.manaraa.com

34

by making small and careful changes. They prefer to work by themselves,

thinking carefully and acting independently. Student in Engineering and

Medicine are comfortable in this quadrant.

• Accommodators have the most hands-on approach, with a strong preference

for doing rather than thinking. They like to ask “what if?” and “why not?”

to support their action-first approach. They do not like routine and will take

creative risks to see what happens. They like to explore complexity by direct

interaction and learn better by themselves than with other people. As might

be expected, they like hands-on and practical learning rather than lectures.

Students in Nursing, Education, and Communications are comfortable in this

quadrant.

Although the results were not statistically significant, studies done by Byrne found

that those with Converger style performed best overall in a first-year programming

course. The strengths of Convergers are said to be in problem solving, decision

making, deductive reasoning and defining problems. This style combines many of

the attributes which are required for successful programmers [34].

Nourishing learning styles primarily takes place in the elementary grades but all

educators should focus on respecting and addressing different learning styles in the

classroom. Computing educators and researchers have devoted considerable energy

to the development of pedagogical tools intended to ease student learning with

hopes of increasing the likelihood of student success in computing [86]. They have

proposed a number of strategies to ensure that all learning styles are addressed in

the computer science learning environments. Incorporating the appropriate tool at

the appropriate time for the appropriate educational outcome can help address

these multiple learning styles in the hopes of easing and promoting the learning of

programming.

www.manaraa.com

35

This study investigates pedagogical tools and the teachers’ perceptions on

characteristics of these tools that may address different learning styles.

4.3 Learning Styles and Teaching Students

The beliefs, feelings, and assumptions of teachers are the air of a
learning environment; they determine the quality of life within it.

Neil Postman and Charles Weingartner

The results of a study conducted by Pope and Scott [176] suggest that teachers’

views on knowledge and theories of learning affect their practice in the classroom.

Yuen conducted a study that explored the perspectives held by twelve Hong Kong

computer science teachers about teaching computer programming and the

underpinning pedagogical assumptions reflected in their perspectives [231]. The

following were among the themes that emerged from Yuen’s study:

• Two teaching methods were evident from data analysis.

– Teacher-dominated method: Teachers direct students’ learning through

textbook and lecture. Teachers are serving immediate needs of

dependent, authority-centered, linear thinking students [231]. The

students being addressed by this teaching method are verbal-sequential

(learning through written and spoken explanations incrementally) on the

Felder-Silverman Model and are comfortable being Assimilators (prefer

organized structured understanding).

– Subject-centered method: Teachers provide more information and use a

variety of presentation methods. The responsibility for learning is placed

upon the student while the teacher provides opportunities for learning to

take place. Teachers illustrate with examples, metaphors, and pictures.

Some teachers use mathematical examples to promote students to

correlate their thinking in computer programming [231]. Although

www.manaraa.com

36

touching on visual learners with various types of examples, learning is

still guided by the teacher and favors reflective over active learners.

Using mathematical examples favors Assimilators and Convergers.

Learners in these categories prefer to think, stay serious, and work alone.

• The following were among the factors affecting learning that were perceived by

teachers.

– Some students have no learning motivation. Lack of relevance of the

subject to their daily life impeded students’ motivation.

– Science students were more capable of learning computer programming

than art students.

Lister suggests that there is more to predicting success in programming than

cognitive factors and that perhaps we should observe and interview students [139].

Many studies in computer science education have been based on student

perspectives about their learning process [60, 92, 98, 126, 132, 145, 157, 224, 230].

In Tobias’ study, a student interview reveals the following responses to why students

who could succeed in science choose other options [215].

• There is a difference in values between a person in humanities and those of a

scientist: in science, there is a preference for “how” questions over “why”

questions.

• There is no sense of community within the class; there is a void of personal

expression.

• Exams tend to ask for exhibition of skills acquired rather than conceptual

understanding.

www.manaraa.com

37

• When asked to display a knowledge of so many concepts at once, it is hard to

get a hold of things.

Clearly, the experiences of this student confirm that the class was not catering to

those students who are Divergers (who like to work in groups and ask “Why”

questions) or Accomodators (who prefer hands-on activities and opportunities for

taking creative risks). Active, intuitive, visual, and global learners were not the

focus in this student’s science class. In Unlocking the Clubhouse: Women in

Computing, Margolis and Fisher investigate why girls do not enroll in computer

science classes [147]. The following reasons are among those listed.

• Courses are taught in a dry, abstract style focused on language details rather

than applications.

• The classroom climate in unfriendly to girls.

• Computing is a male activity.

Again we see that the comments reflect dissatisfaction with an environment that

caters to sensing, sequential learners. The Grand Challenges paper [150] correctly

nominates, as a subchallenge, the participation in research-based challenges whose

purpose is to promote an improved image of “computing”. It is not enough to

improve our image. We need to improve our understanding of what is educationally

interesting to those people outside the “clubhouse” [139] and we need to address

their learning styles.

What makes learning take place? How does (or can) a teacher affect the student’s

learning? Chickering and Gamson offer seven principles based on research on good

teaching and learning [42].

Good practice in undergraduate education :

www.manaraa.com

38

1. Encourages contacts between students and faculty.

2. Develops reciprocity and cooperation among students.

3. Uses active learning techniques.

4. Gives prompt feedback.

5. Emphasizes time on task.

6. Communicates high expectations.

7. Respects diverse talents and ways of learning.

Good teaching and good learning take place in the classroom where the teacher is

the most influential factor and the connecting link between the students and the

pedagogical tools used in the classroom. This study investigates the teachers’

adherence to these principles when choosing pedagogical tools for introductory

programming classes.

The aspects of pedagogical tools that address different learning styles, support good

practices in education, and ease the students’ learning of programming are discussed

in Chapter 5 as is the past research on the specific tools and categories of tools.

www.manaraa.com

39

Chapter 5

Pedagogical Tools: Educational Research

The basic question is to decide what to do: either develop a tool for
existing teaching and learning practices, or change teaching and learning
practices by developing a new tool [129].

A study by Palak and Walls sought to examine the relationship between teachers’

beliefs and their instructional technology practices among technology-using teachers

who worked at technology-rich schools to ultimately describe if change in practice

toward a student-centered paradigm occurred. The results showed evidence that

teachers’ use of technology to support student-centered practice is rare even among

those who work in technology-rich schools and hold student-centered beliefs. The

study also indicated that these teachers continue to use technology in ways that

support their already teacher-centered instructional practices [169]. Although this

study focuses on K-12 teachers and the technology referred to was not necessarily

pedagogical tools used in programming classes, these K-12 teachers are instilling

attitudes about the use (or non-use) of technology in a classroom setting.

In referencing why teachers do not accept and actively use software tools in their

programming classes, Levy cites two important findings grounded in literature [135]:

• There is an inconsistency between positive reactions of teachers towards

innovations and the fact that those same teachers do not bring those

innovations into their classrooms.

• Teachers find it difficult to relinquish their position of authority and they

resist changes that might move the center of learning to the student,

“reducing” the role of the teacher to that of a facilitator.

www.manaraa.com

40

Becker and Riel address these concerns by summarizing the educational theorists

Dewey, Piaget, and Vygotsky in providing the following teaching best practices [17]:

• Design activities around teacher and student interests rather than in response

to an externally mandated curriculum.

• Have students engage in collaborative group projects where skills are taught

and practiced in authentic contexts rather than in a sequence of textbook

exercises.

• Focus instruction on students’ understanding of complex ideas rather than on

definitions and facts.

• Teach students to self-consciously assess their own understanding, in contrast

to multiple choice testing.

• Model learning, rather than presenting oneself as fully knowledgeable.

A pedagogical software tool cannot stand on its own; rather, it must be integrated

into the curriculum [135]. It’s not the tool alone that supports student learning in

this curriculum. It’s how and when the teacher uses the tool.

Section 4.3 lists seven principles based on research on good teaching and learning

offered by Chickering and Gamson [42]. This study investigates pedagogical tools

used in introductory programming classes and the teachers’ perceptions of the

characteristics of the tools that contribute to its effectiveness. This study

investigates the teachers’ adherence to these seven principles of good teaching and

learning when choosing pedagogical tools for introductory programming classes.

A discussion of literature pertaining to the individual tools and tool categories as

they relate to introductory programming courses follows. For the purpose of this

www.manaraa.com

41

research, the tools are classified into different categories. Included here is a brief

explanation for each category and the past research related to the tool category or

individual tools in the category.

5.1 Visualization Tools

Visualizations are graphical displays of information. Program visualizations consist

of different graphical objects (often animated) and textual objects visualizing the

execution of programs [184]. Visualization technology aims to help students

understand how algorithms work in order to ease the problems of learning to

program [126]. Examples of visualization tools referenced in this study include

Jeliot 3, a program visualization application that visualizes how a Java program is

interpreted [107] and jGRASP, a tool providing automatic generation of control

structure diagrams for code visualization, UML class diagrams for architectural

visualization, and viewers for dynamic views of primitives and objects [109]. Jeliot 3

and jGRASP offer dynamic visualization techniques. RAPTOR is an iconic

programming environment, designed specifically to help students visualize classes

and methods and limit syntactic complexity. RAPTOR programs are created

visually using a combination of UML and flowcharts [38].

The purpose of any visualization tool is to improve the learning of the algorithms or

concepts that are visually displayed. Many computer science educators may believe

that visualization technology, under the right conditions, can greatly benefit

learners and instructors alike but it is of little educational value unless it engages

learners in an active learning activity [162]. Naps, et. al lists eleven commonly

accepted best practices for Algorithm Visualizations (AV):

1. Provide resources to help learners interpret the graphical representation.

2. Adapt knowledge to the level of the user.

www.manaraa.com

42

3. Provide multiple views.

4. Include performance information.

5. Include execution history.

6. Support flexible execution control.

7. Support learner-built visualizations.

8. Support custom input data sets.

9. Support dynamic questioning.

10. Support dynamic feedback.

11. Complement visualizations with explanations.

But “an educator must weigh carefully how to adapt and apply a visualization

system since there is no single system or activity that is best for all learners [162].”

In a study done by Parker and Mitchell [170], the visualization software used was

intended only to supplement traditional teaching methods. In that study, animated

demonstrations had a measurable impact on simple algorithms but complex

algorithms provided no benefit. The authors also state that the student’s learning

preference has more to do with comprehension and retention than the effectiveness

of an algorithm animation system.

There are mixed reviews of the effectiveness of visualizations used in programming

classes [12, 100, 142, 174]. Only about half of experimental studies conducted on

algorithm visualizations demonstrate a significant effect for the AV, and lack of

significant improvement is often attributed to the AV not actively engaging the

student [201]. Some say they do not significantly improve the learning [100] and

others claim they help motivate students and aid in the understanding of how

www.manaraa.com

43

algorithms work [114, 136, 184]. Research has shown that students learn best when

actively engaged in the learning process [30, 42, 202]. Active learning involves

students participating in some way that results with them thinking about what they

are doing rather than just listening [202]. The more actively learners were involved

in activities involving AV technology, the better they performed [100]. Naps, et.al

identifies a taxonomy of engagement levels that are summarized by Urquiza-Fuentes

and Liu [142, 218]:

1. No Viewing. This level refers to instruction without any form of

accompanying algorithm visualization.

2. Viewing. This level can be considered the core form of engagement. A learner

can view an animation passively, but can also exercise control over the

direction and pace of the animation, use different windows (each presenting a

different view), or use accompanying textual or aural explanations.

The remaining four categories all include viewing.

3. Responding. The key activity in this category is answering questions

concerning the visualization presented by the system. In the responding form

of engagement, the learner uses the visualization as a resource for answering

questions.

4. Changing. This level entails modifying the visualization. The most common

example of such modification is allowing the learner to change the input of the

algorithm under study in order to explore the algorithms behavior in different

cases.

5. Constructing. In this form of engagement, learners construct their own

visualizations of the algorithms under study. It is important to note that the

www.manaraa.com

44

constructing form of engagement does not necessarily entail coding the

algorithm.

6. Presenting. It entails presenting a visualization to an audience for feedback

and discussion.

The results of Naps’ study confirmed that learning improves as the level of student

engagement with AV increase [162]. Traversing through the engagement levels will

ultimately meet the needs of the Divergers, who prefer to start from details and

work up to the big picture through hands-on activities, and the Accomodators, who

like to explore complexity by direct interaction, and perhaps motivate “second tier”

students to pursue computer science.

5.2 Microworlds

A microworld is a learner-centered world that is explored by directly manipulating

objects in the world with a limited set of simple commands [86]. More generally

described by Latour, “A microworld is a tiny world inside which a student can

explore alternatives, test hypotheses, and discover facts that are true about that

world [128].” Microworlds provide metaphors where storytelling can occur.

Examples of microworlds referenced in this study include Alice [6], Greenfoot [82],

GridWorld [83], Jeroo [108], and Karel [24].

Many microworlds are designed to provide a gentle introduction to object-oriented

programming, provide concrete experiences with objects, and support visualizing

objects in a meaningful context [23, 50, 60, 123]. The use of a programming

microworld is based on a physical metaphor and focuses the students’ on solving

interesting problems. The use of microwords contributes greatly to decreasing the

“distance” between the mental models or descriptions of algorithms in a natural

language and their description in a programming language [230].

www.manaraa.com

45

Henriksen and Kölling state that any tool to support an object-early approach for

beginners must attempt to support the practical stages of Kolb’s circle

(experimentation, experience, observation) explicitly at the level of the fundamental

concept: objects. Students must be able to manipulate, experiment with, and

observe objects, not merely lines of source code [96].

Microworlds are pedagogical tools that can motivate students, enable creative

self-expression, reduce technical barriers, and increase confidence and retention

[60, 96, 117, 177]. These design goals are generally supported by the perceptions of

teachers and tool developers teaching with microworlds and by students’ reactions

to programming with microworlds as recorded in interviews or on surveys in the

documentation of past research studies:

• The students found both the programming environment (objectKarel) and the

exercises interesting [230].

• Alice did seem successful at increasing our weaker students self confidence in

their programming abilities [178].

• Students in non-majors introductory programming courses responded

favorably to their experience of programming with Alice [98].

• In our experience the impact of Alice on student perceptions of and attitudes

toward programming seemed largely, although not entirely, positive. In

particular, we found the ability of Alice to generate laughter remarkable [178].

• The attrition of our most at-risk majors has been significantly reduced [50].

• Students found Jeroo to be a valuable tool and felt it serves as a good

introduction to Java [60].

• Students appear to have more confidence in their own ability [200].

www.manaraa.com

46

• Students have developed a more mature style of programming than in the

past[60].

• Students have a better grasp of control structures, methods, and objects

following the four-week introduction to programming using Jeroo [60].

• Most of the students believed that they had a stronger understanding of

classes, objects, and how to use Greenfoot. They also believed that they had a

higher comfort level with programming in general and technology in general

[4].

• The course (Karel) is fun for both students and instructors; students

understand the fundamental concepts early, allowing them to approach

advanced topics with confidence [16].

Formal empirical research with microworlds has provided the following information

• A study by Mullins reports that retention data shows that the incorporation

of Alice into the programming sequence has increased the number of students

that pass the courses and decreased the number of withdrawals [161].

• A study conducted by Moskal, et. al supports the effectiveness of the Alice

course for improving students performance in CS1, retention within computer

science, and attitudes towards computer science. At-risk students that

participated in Alice received significantly higher grades than at-risk students

that did not participate in Alice [160].

There is not a great deal of formal research (quantitative or qualitative) on the use

or effectiveness of of microworlds in introductory programming classes. Many fine

computer science educators and researchers have offered suggestions to ease the

learning of programming [95] or to encourage the use of microworlds to ease the

www.manaraa.com

47

teaching of programming, but these are the suggestions of the educators. Empirical

data based on learning behaviors and/or teaching pedagogy related to the use of

microworlds is lacking.

5.3 Robots

In the context of this study, robots refer to the LEGO MindstormsTMsystem. This

system extends the traditional Lego bricks with a central control unit (the RCX) as

well as motors and various kinds of sensors [121]. The robots can be programmed to

explore an environment, detect obstacles and lights, and solve simple problems [94].

Another example cited in this study is Robotran, a multibody modeling at

UCL-CEREM which is entirely based on Matlab/Simulink [193].

As with the other pedagogical tools discussed, the most important goal in

introducing robots into the computer science curriculum is to improve student

learning [65]. Past research on using robots in introductory programming classes

has mixed results. A study conducted by Fagin and Merkle in a core computing

course required by all first-year students found that test scores were lower in the

robotics sections than in the non-robotics ones, and the use of robots did not have

any measurable effect on students choice of discipline [65, 66]. The results of a study

conducted by Hasker suggest that students using robots in an introductory

programming class learn as much as those engaging in traditional programming

problems and that the students found programming the robots more interesting

[94]. Studies by Davis et al. show that teaching with robotics does not necessarily

hinder students from learning the basic programming skills in introductory classes

[57]. Student surveys in a study conducted by Meyer resulted in 59% of the students

felt that working with robots helped them to better understand algorithms, 64%

indicated that working with robots helped them to better understand programming,

and 71% said that more robotics material should be included in the course [155].

www.manaraa.com

48

Summet, et al. personalized a Computer Science 1 course (CS1) by developing a

curriculum that uses a robotics context to teach introductory programming in which

a robot is provided for each student. Their results show a higher success rate in the

robotics sections of CS1 than the non-robotics CS1 sections [209].

Because of the physical nature of a robot, there is an unavoidable hands-on

approach to teaching. Robots encourage student experimentation at many different

levels [130]. This approach is appealing to the Felder’s active learners and to the

Accomodators in Kolb’s Learning Style Model.

5.4 IDEs

An integrated development environment is a software application that provides

several utilities for programmers and software developers packaged into one bundle.

This bundle usually includes a source code editor, a compiler or interpreter,

automated building tools, and a debugger. Most IDEs provide a way to assist

students in writing correct syntax in a language in which they may not be

proficient, provide a simple interface to the language compiler, flag any syntax

errors, and include a mechanism for running a program [188]. Some IDEs were

specifically designed for introductory programming classes providing a simple,

unintimidating environment with an interactive interface [7, 28, 188]. Examples of

IDEs referenced in this study are BlueJ [28], DrJava [61], DrScheme [62], Eclipse

[64], Greenfoot [82], JCreator [106], jGRASP [109], and Netbeans [163].

Some IDEs like BlueJ, DrJava, and jGRASP are designed specifically for

introductory programming classes. Because of this gentle approach, these IDEs may

fail to expose students to “real world” programming environments. IDEs such as

Eclipse and NetBeans are targeted at professional developers and include a host of

advanced features but may have learning curves are too steep for novice

programmers.

www.manaraa.com

49

“In an introductory class, a programming interface must be intuitive and the IDE

should provide simple mechanisms for working around complications in the Java

language that are pedagogic distractions (i.e. public static void main(String[]

args)) [189].” The IDE for novice programmers should create an unintimidating

atmosphere where the student is not overwhelmed with the features of the tool but instead

the tool eases and promotes the learning of programming. BlueJ, DrJava, and jGRASP

are IDEs that are designed specifically for the novice learning environment. [7, 53, 124].

BlueJ was developed for the teaching and learning of object-oriented programming [124].

The developers of BlueJ believe that Integrated Development Environments (IDEs) for

object-oriented language should encourage users to develop and test individual classes

rather than requiring users to always create complete programs [116]. They believe it is

essential that the program development environment is unified with the programming

language paradigm [196]. BlueJ is widely used in introductory programming classes at

both the college and high school levels. This is confirmed by hundreds of list posts on the

AP CS EDG [11] referencing the use of BlueJ and the numerous publications in computer

science education that acknowledge BlueJ as the environment in which the research is

based [13, 68, 71, 93, 122, 144, 171, 172, 182, 194, 221, 229]. Although this research does

not directly prove or directly support the effectiveness of this IDE on student learning, it

does confirm the widespread use of BlueJ within the computer science education

community. There are, however, non-believers. The results of Shanmugasundaram, et.al

indicate that BlueJ is not significantly more effective (p > 0.05) than Textpad in the

learning of Java programming [203]. In their study, both sections were taught and tested

with the same materials. These researchers observed that, for some reason, the students

do not tend to stay with testing their classes using the object bench of BlueJ after using it

in the early stages of learning.

BlueJ allows teachers to teach introductory courses differently than can be done without

it. The tool allows for the avoidance of the dreaded public static void main(String[]

args). But teaching with BlueJ is not just about the tool. If the teacher does not

www.manaraa.com

50

understand the pedagogical advantages of this environment and does not teach differently

with the tool than without it, the learning benefits emphasized by the developers are lost.

DrJava is a lightweight development environment designed to evaluate expressions,

instantiate objects and call methods in a similar way as an interpreted language such as

Python. DrJava provides a good example of providing an intuitive interface that has the

ability to interactively evaluate Java code [61, 175]. Students can enter and execute code

one line at a time thus getting immediate feedback. Most of the literature written on

DrJava focuses on the tool capabilities and not on the learning that results from using the

tool or how the tool affects teaching in an introductory programming class.

The strength of both BlueJ and DrJava is active experimentation with Java constructs.

Beginners do not have to write complete programs to experiment with simple expressions

and statements, and get immediate feedback [167]. Olan presents a comparison of the

pedagogical approaches used by BlueJ and DrJava as a guideline for teachers to select the

IDE best suited to the teaching style used in the introductory course [167].

jGRASP is a lightweight IDE that provides automatic generation of visualizations that

directly support the teaching of major concepts in CS1 and CS2 [52]. It provides both

static and dynamic visualization capabilities [175]. Like BlueJ and DrJava, jGRASP is

developed to ease the task of teaching and learning Java. jGRASP includes a workbench,

an interactions pane, and also creates control structure diagrams to help in program

understanding. The developers believe that each of the automatically generated software

visualizations (CSD, UML, and Object Views) can be used to make learning to program a

more enjoyable experience [53]. Most of the literature written on jGRASP focuses on the

tool capabilities and not on the learning that results from using the tool or how the tool

affects teaching in an introductory programming class.

JCreator seems to be a popular Java IDE in secondary schools. More than one-third of

the posts from the AP CS EDG about IDEs reference JCreator [11]. One disadvantage is

that Jcreator is only available for the Windows Operating System and many secondary

www.manaraa.com

51

schools have adopted the Mac OS [11]. Very little (if any) formal research has been

published on the use of JCreator in introductory programming classes. The Web site for

this IDE claims that it is the perfect tool for programmers of every level, from the novice

programmer to the Java-specialist [106].

Professional IDEs are designed to help software developers write programs more quickly

and produce better quality code. This is not necessarily the focus in an introductory

programming course. The advantages of a professional IDE may be outweighed by its

complexity, requiring students to spend excessive time learning the tool.[175]. Chen and

Marx [41] concluded that the complexity of Eclipse was manageable only if the instructor

continuously demonstrated it in the classroom and asked the students to do the same.

More importantly, the instructor needed to introduce Eclipse features gradually. Their

observations also indicate that the Eclipse IDE is challenging to students but the

challenge actually inspires the students’ “can-do” attitudes. They also observed that after

using Eclipse, most of their students showed a sense of confidence and were eager to share

their experience with others. Deugo claims that students need to know how to use Eclipse

to be competitive in todays corporate software market [59]. He based this on the results of

a survey conducted in November 2006 by BZ Media. The survey reported that 66.3% of

SD Times subscribers surveyed reported that developers within their organizations used

Eclipse.

NetBeans is a free, open-source Integrated Development Environment for software

developers [163] bought by Sun Microsystems in 1999. Although NetBeans is used in

educational institutions, it is primarily used at the university level in advanced computer

science courses (database management [36], applications programming [217], and software

engineering [101]) and not in introductory programming classes.

To attempt to achieve the best of both worlds (a pedagogically sound learning environment

and exposure to a “real-world” IDE), the pedagogical IDE developers are working with

the professional IDE teams to create plug-ins for the professional environments.

www.manaraa.com

52

With the DrJava plug-in, Eclipse is transformed from an intimidating professional

environment to a pedagogic IDE with a reasonably simple interface [189]. The plug-in is

intended to provide several features from DrJava to Eclipse, including an interactions

pane, a simplified user interface, and a debugger integrated with the interactions pane. In

addition, the DrJava plug-in can be combined with other pedagogic Eclipse plug-ins,

enabling an instructor to create an environment with the specific capabilities required for

a particular course [189].

The BlueJ and NetBeans teams are collaborating to create a tool (NetBeans IDE BlueJ

Plugin) that offers a seamless migration path for students that supports the switch from

educational tools into a full-featured, professional IDE [163]. The plugin enables NetBeans

to work with BlueJ projects so that students can start to make use of NetBeans more

advanced features without sacrificing the features and familiarity of BlueJ [28].

5.5 Games

This study references the Game Maker development software available through YoYo

Games. The software involves drag-and-drop actions to program, has a very short learning

curve, and does not require prior programming experience [185]. The games include

backgrounds, animated graphics, music, and sound effects [77].

Many computer science educators recognize that students show enthusiasm for activities

involving elements of games and so game development is often used in introductory

programming classes as a motivational technique [45, 133, 180]. Games are used as

examples and assignments in computer science courses [14, 123] and it is not uncommon

to use games or game development to engage students early in the computer science

curriculum with hopes of improving recruitment and retention [125, 159, 180].

Giguette incorporated a pre-gaming activity where students played a game-like version of

each assignment before designing and coding their own programs [79]. Other studies have

had students rewrite classic computer, arcade, or board games or to redesign these classic

www.manaraa.com

53

games [99, 143, 211]. A study by Wescott investigated whether or not digital game playing

improves the effective transfer of the students problem solving, critical thinking, logical,

and programming knowledge from game playing to a formal programming environment

[222]. For this study, the researcher discussed programming concepts and provided a

mapping of concepts to the game being played. The students then used Scratch to play

the game and to modify the code and as a final step, the student transitioned from

Scratch to formal programming involving the C++ programming language. This research

found that playing digital games improves overall programming outcomes.

Chamillard describes conducting a longterm study of the effectiveness of integrating

computer games into the computer science curriculum using such tools as Game Maker,

The Games Factory, Pie 3D Game creation system. The results of the study indicate that

most students “do very well on the game assignments using the game development tools

[40].”

Work done by Guimaraes and Murray used the gamemaking software, Game Maker.

Game Maker provides and environment that is described as being intuitive and easy to

use and that introduces students to programming through an objects-first approach.

Through the analysis of the use of Game Maker during camps offered to university

students and junior and senior high school students, several strategies that contributed to

student engagement and learning were identified [87]. These included:

• It is beneficial for students to play an example game, modify that game and then

create their own game implementing the features exemplified in the example game.

(This addresses active, visual learners and the Accomodators who prefer hands-on

and practical learning.)

• It is important to properly set expectations for what students can achieve in such a

short time. (This addresses the sequential learners who learn in orderly steps and

the Assimilators who like organization and structure.)

• It is important to provide time for students to work independently allowing them to

www.manaraa.com

54

experiment on their own and develop their own individual learning processes. (This

addresses the Convergers who prefer to work on their own and also to the

Accomodators who like to explore complexity by direct interaction.)

• Requiring student presentations of their work provides motivation for students to

achieve at higher levels.

Game Maker provides the opportunity for students to engage and experiment with basic

computer science concepts in a motivating environment that provides immediate feedback

[87]. The nature of games permits active engagement and increased enthusiasm levels.

Learners can explore and experiment [183]. Using Game Maker and following the

strategies above in an introductory programming class, can help to address the different

learning styles. Designing and building a game can be a very useful way towards a more

thorough understanding of the algorithms, data structures and other topics in computer

science [183].

With the inclusion of games in an introductory programming curriculum, the hope is to

motivate students to enroll in the course, to encourage success regardless of the student’s

preferred learning style, and to retain these students in the computer science discipline.

5.6 Libraries

In the context of this study, libraries refer to collections of Java tools that are designed to

make programming easier for novices. These collections provide simplified features (e.g.

GUI components) or provide rich collections of classes that are easily used by novices [32].

Libraries referenced in this study include ObjectDraw [166], the ACM Java Task Force

Library [104], Java Power Tools [103], and the Media Computation Library [152].

Because teaching Java in an objects-first approach is often very difficult, computer science

researchers and educators have developed libraries to ease that task [104, 103, 152, 166].

These libraries (toolkits) are developed to emphasize programming concepts from the

beginning, requiring students to think from the start about the programming process with

www.manaraa.com

55

a focus on methods and objects [31]. Libraries, in the context of this study, provide

simplified features (e.g. GUI components) or provide rich collections of classes that are

easily used by novices allowing them to build programs with impressive graphics. These

toolkits are essential for pedagogy since introductory programming classes require that

students understand and learn to practice algorithmics, encapsulation, and interaction

[186].

The toolkits or libraries commonly used in introductory programming classes and

referenced in this study include ObjectDraw [166], ACM Java Task Force (JTF) Library

[104], Java Power Tools (JPT) [103], and the Media Computation Library [152].

The Java Task Force Library, though the youngest of those identified above, is described

first primarily because an itemized list of development goals is included in the

documentation of this tool. The principles adopted by the Java Task Force in the

development of the JTF Graphics Library include [104]:

• Design for an object-oriented approach allowing for an “objects-first” pedagogy.

• Adopt a minimalist strategy. To avoid the proliferation of complex tools that do

little to address the scale problems of Java, the Task Force has sought to minimize

both the number and conceptual complexity of our packages. The concern of the

Task Force is limited to those areas that currently constitute stumbling blocks to

the effective use of Java.

• Promote flexibility for adopters. Introductory courses in computer science vary

widely in philosophy, topic coverage, and approach. The goal of the library

development is to empower teachers and students by providing tools to extend their

reach. The library tools are intentionally general enough to support a wide variety

of programming styles.

• Maintain conformance with the Java standard. Throughout our design, the Task

Force sought to use the standard Application Programmer Interfaces (APIs)

www.manaraa.com

56

provided by Sun Microsystems. The only occasions in which we have proposed

alternative APIs are those for which there was clear evidence that the existing

facilities were not working well at the introductory level. We have also made the

ACM packages separable to make sure that no one is required to adopt parts of the

nonstandard packages that they regard as unnecessary.

• Retain compatibility with earlier releases of Java.

• Support multiple environments.

Observations made by Mertz confirmed that students have benefited from the

simplification of the Java language made possible by the ACM Java libraries.

The simplicity of graphics programming using the JTF Library keeps students engaged by

providing a tool for the teaching and learning of basic concepts in an interesting way [154].

The work of the JTF committee resulted in a collection of Java-based resources which

simplifies the teaching and learning of computer science [153].

In designing the ObjectDraw Library the developers were very conscious of the fact that

the advantages of using a library are offset by the disadvantage of hiding portions of “real

Java” from students [166]. As with the JTF Library, the scope of the ObjectDraw library

is carefully limited. As with the JTF Library, in using the ObjectDraw Library graphics

classes, the design deliberately mimics the methods provided by the standard Java

Graphics class [166].

Bruce, Danyluk, and Murtagh list the goals of an introductory programming course

taught using ObjectDraw at Williams College [33]:

• Use an object-first approach, requiring students to think from the start about the

programming process with a focus on methods and objects. (This approach

addresses the Assimulators who prefer to start with high-level concepts and work

down to details.)

• Use graphics and animation extensively. Experience in an earlier version of this

www.manaraa.com

57

course convinced us that graphics can be an important tool both because students

are able to create more interesting programs, and because graphic displays provide

students with visual feedback when they make programming errors. (This addresses

the needs of visual learners.)

• Introduce event-driven programming early. Most programs students use today are

highly interactive. Writing programs that are similar to those they use is both more

interesting and more “real” to the students. (This addresses the needs of sensing

learners and Accomodators who like hands-on and practical learning.)

The ObjectDraw Library supports this “OO-from-the-beginning” approach [33]. It is

evident that it is not the tool alone that is effective but how the tool is used within the

introductory programming course.

Java Power Tools (JPT) is a Java toolkit designed to enable students to rapidly develop

graphical user interfaces in freshman computer science programming projects [186].

Rasala, et al. note that one pedagogical problem in teaching OOP is that the small-scale

textbook examples are not of a size that convinces a student that OOP is worth all of the

fuss and until a student experiences a large project in which the value of OOP is evident

there is skepticism that the complications of defining classes and methods are valuable

[186]. As with the other libraries mentioned, the JPT Library provides rich collections of

classes that are developed to be used by novices. Students entering the field of computer

science now come with the expectation of learning to build programs with impressive

graphics and flexible user interfaces [181]. Libraries are tools that make this possible in an

introductory programming class. The potential for using Java to build quality user

interfaces in introductory courses will be limited unless students can implement such

interfaces easily [181]. The philosophy of the developers of the JPT toolkit is to provide

students with the foundation necessary for building quality programs and then to let them

use their talents to solve interesting problems that illustrate the breadth of computer

science applications [181]. This philosophy addresses the needs of the Accomodators, who

take creative risks and explore complexity by direct interaction, and the active learner.

www.manaraa.com

58

Media Computation (MediaComp), developed at Georgia Institute of Technology (Georgia

Tech), is a collection of cross-platform libraries to manipulate pixels in a picture and

samples in a sound [90]. The purpose of these libraries is to allow for the development of

exciting programming applications to be accessible by students in an introductory

programming class, many of whom Tobias would classify as “second tier” students

(capable but choosing fields other than computer science). The media computation course

taught at Georgia Tech has been majority female, and women succeed at the same or

better rates than the male students [90]. Similar improvements in success rates in media

computation courses have been seen among underrepresented groups by Sloan and Troy at

the University of Illinois at Chicago [204].

From experience using the Python version of MediaComp in introductory programming

classes (CS 0.5) , Sloan and Troy believe the multimedia approach is a good one because

most students enjoy multimedia already and are thus likely to be very interested in

manipulating images, animations, and music themselves [204]. Sloan and Troy use the

Georgia Tech approach of allowing a student to first work with the multi-media material

itself, then with programming shortly thereafter [204]. Their results from working with

Media Computation in this CS 0.5 course show a very low WFD rate (withdrawal, earn an

F, or earn a D). The students in this course report that the course is highly relevant. The

results of Sloan and Troy are from a pool of students that was over 25% African-American

and Hispanic [204].

The theme of Georgia Tech’s Computer Science 1 Course using the MediaComp library is:

Computation for Communications [88]. Judging by survey responses of students exposed

to the MediaComp Library, Forte and Guzdial conclude: Students seem to think that

media computation as a subject is relevant and interesting and a number of students

commented on the fact that they feel it is important to understand how the programs

they use work [74].

An “Introduction to Media Computation” course that is specifically designed for

www.manaraa.com

59

non-majors at Georgia Tech incorporates the following elements [192]:

• Creativity: to counter the reputation of CS as boring. (Supports Accomodators.)

• Relevance: to illustrate that CS concepts are applicable to non-majors. (Supports

sensing learners.)

• Collaboration: to counteract the stereotypes of computing as asocial and

inhospitable. (Supports Divergers.)

• Restricted registration (non-majors): to reduce intimidation and support a

hospitable culture.

The course addresses the myths that computer science is boring and asocial, that the

material is irrevelant to non-majors, and that the field of computer science is an

intimidating, uninviting culture. Media and computation together provide a motivating

framework for many students, and encourage some students to excel who would otherwise

prefer not to try [74]. This approach addresses Tobias’ “second tier” population. But it is

not the MediaComp library alone that provides this framework. It is how this library is

used in the learning environment.

5.7 Summary

Gross and Powers evaluated assessments on selected novice programming environments.

They noted that most of the assessments were done by the developers of the environments

and that many assessments conducted were more opportunity-directed than

problem-directed. Tool developers are experts at using their environments, and have often

developed an associated pedagogy designed to focus on the strengths and uniqueness of

their environments [85]. The tools may not be effective in and of themselves but when the

pedagogies are offered by the tool developers, frameworks for the proper use of the tool in

a learning environment are provided. Gross and Powers note that some of the least

studied questions are those that focus on how the environments impact a student’s

learning process and understanding from a formative perspective. Although some tools

www.manaraa.com

60

clearly attempt to address different learning styles, there is little formal research that

supports this, or even considers this as relevant.

The pedagogical tools that are used in introductory programming have changed what

computer science educators teach and how they teach programming. Teaching an

introductory programming course can be challenging, especially if the course enrollment

includes students with divergent goals and different learning styles. By engaging students

with hands-on learning activities, students come to view computer science as a fun,

interesting, and a broadly applicable discipline. An initial positive experience with

computer science can encourage students to continue studies within the discipline [10]. If

computer science is not perceived as interesting or useful, students fail or drop out [74].

This chapter has discussed specific categories of pedagogical tools and the research done in

each of the categories as it relates to the learning of and teaching of programming.

Although some studies are based on empirical data and defined research methodologies,

much of the information collected on the use of pedagogical tools focuses on student

perceptions and teacher observations in the learning environment. Many of the studies

give results that are based only on the developer’s perspective.

Most past research in the area of pedagogical tools investigates one specific tool and its

effectiveness (proven or observed) or one category of tools (e.g. Visualization tools) and

the effectiveness of this type of tool as related to student learning.

This research study is different. It investigates the effectiveness of tools across categories.

Good pedagogical tools come and go to fit with the technologies of the time. Existing

tools will continue to be improved and new tools will continue to be developed. This

study investigates the characteristics that are perceived to contribute to the effectiveness

of pedagogical tools regardless of the tool category. It serves as a a resource for teachers,

present and future tool developers, and those involved with computer science curriculum

development.

www.manaraa.com

61

The results of this study are based on the perceptions of teachers using pedagogical tools

in the introductory programming course. Information gained from perceptions is

important and can be a starting point for more formalized research. “The [individuals’]

perceptions of the attributes of innovations, not the attributes as classified by experts or

change agents, affect its rate of adoption [195].” Perceptions that teachers have about

pedagogical tools used in introductory programming classes and the communication of

these perceptions can affect the rate of adoption of the tool within the computer science

education community.

www.manaraa.com

62

Chapter 6

Research Methodology

6.1 Introduction

Mirriam-Webster defines success to be a favorable or desired outcome [156].

The success of a pedagogical tool designed for introductory programming courses depends

on the tool’s effectiveness and the dissemination of information about the tool to the

population of programming teachers. Programming is an essential skill for students

wishing to pursue the field of computer science [118, 150] and the task of specializing

programming environments for novices begins with the recognition that programming is is

not an easy skill to learn [70].

The Conference on Grand Challenges in Computing [150] was held in Newcastle, Great

Britain, on 30-31 March 2004 to identify problems in computing, where ‘computing’ was

used in a generic sense to include computer science, software engineering, information

systems, artificial intelligence, computer hardware, communications, Internet computing,

and even aspects of cognitive science. The Grand Challenges strand on the educational

aspects of computing presented an opportunity to identify and articulate the priorities

and the challenges that face educators in computing. As defined for this conference, an

education-based grand challenge must be such that, when achieved, it will:

• lead to substantial improvement in some significant aspect of the educational

processes in computing;

• arouse curiosity and generate enthusiasm within the computing community;

• be international in scope and so have wide and significant relevance;

• be comprehensible and capture the imagination;

• have the capacity to bring about changes in attitude, changes in expectation, even

www.manaraa.com

63

change at a social level [150].

One of the seven challenge areas in computing education addressed at this conference was

programming issues. The objectives in this area were described as being straightforward.

Educators would agree that it is desirable to employ six right attributes. One of these

attributes was to teach in the right environment with the right support tools [150].

There is little discussion of and research on the teaching of programming as it relates to

pedagogy. There is even less educational research that address how the process of learning

affects or should affect instruction [39]. The pedagogy employed in the introductory

programming class needs to accommodate different programming paradigms, different

learning styles, and a more diverse student population. Chapter 4 of this study discusses

teaching pedagogies, learning styles, and the research done in these areas as it relates to

introductory programming classes. In an attempt to make programming more accessible,

a variety of pedagogical tools have been developed. The literature review in Chapter 5

describes the research involving the individual tools and the various categories of tools

used in introductory programming courses.

The purpose of this study is to enumerate and examine a list of characteristics that are

perceived to contribute to the effectiveness of a pedagogical tool used in introductory

programming courses, to determine those characteristics that are common to successful

pedagogical tools, and to determine the teachers’ motivations for choosing a tool to

integrate into their curriculum.

6.2 Research Process Design

An action research methodology is defined by educational researcher S. M. Corey, one of

the founding fathers of action research, as a process used so that practitioners can

evaluate, improve, and steer decision-making and practice [46].

This dissertation follows a modified definition of action research methodology. The results

obtained by examining the perceptions of teachers are intended to steer tool developers in

www.manaraa.com

64

the development of new tools and in the improvement of existing tools and to guide

teachers in the adoption of pedagogical tools in an introductory programming course. As

past research confirms, perceptions of the attributes of innovations affect its rate of

adoption [195].

This study employs a mixed methods approach primarily implementing a sequential mixed

method design [212]. The study starts with a quantitative approach (survey) and proceeds

with a collection of experiences from individual teachers (interviews). The quantitative

component provides information on the tools most often chosen to be incorporated in an

introductory programming course and the characteristics that are perceived to contribute

to the effectiveness of the tool. While the quantitative portion provides greater breadth,

the qualitative portion provides more depth to the results. In parallel to this, interviews

with tool makers were conducted to provide insights from the developer’s point of view,

adding a parallel qualitative strand in this study. Together, the three strands yield more

complete and meaningful results. Figure 3 uses five distinct design stages over three

distinct strands to illustrate the mixed methods approach used.

• The Conceptualization Stage includes the design of the survey and the development

of the interview questions.

• The Experimental Stage (Methodological) includes the data collection.

• The Experimental Stage (Analytical) includes analysis of the data.

• The Inferential Stage includes emerging explanations and inferences.

This research design and methodology are used in collecting information from both

educators and toolmakers in order to understand their practices and perceptions involving

pedagogical tools in introductory programming classes. The data collected provide

answers to the research questions posed in Chapter 3, provide valuable information to tool

developers, and provide a reference for teachers choosing to use pedagogical tools in

introductory programming courses.

www.manaraa.com

65

Figure 3: Graphical Illustration of Mixed Research Design (based on the illustrations from
Teddlie and Tashakkori) [212]

www.manaraa.com

66

Following the procedure described by Cohen [46], the study uses multiple sources for data

collection gathered in three stages. The first stage surveys teachers who use pedagogical

tools in an introductory programming course to identify the tools most commonly used

and to explore the characteristics that are common to these tools. Using progressive

focusing, this study starts by collecting a wide range of data, and then, by sifting, sorting,

reviewing and reflecting on them, the salient features of the situation emerge [46, 206].

The data are then used as the agenda for the next stage. Progressive focusing indicates the

desire to leave observations and interpretations open [206]. The second stage explores the

survey results in more detail through Structured open-ended interviews with teachers that

use, have used, or consciously choose not to use tools in their programming courses. This

provides more detailed information on the reasons for the use, non-use, and integration of

the tools. Finally, to provide an explanatory insight of the tool and the motivation for its

creation, semi-structured interviews with several tool developers were conducted. The

data analysis shows the commonalities, differences and similarities of the characteristics of

pedagogical tools developed for and used in introductory programming classes.

6.3 Stage 1: Survey to Teachers

6.3.1 Introduction

The first of the three stages of this research study employs a Web-based survey to assess

the perceptions of teachers who use pedagogical tools in an introductory programming

course. The purpose of this inquiry was

• to obtain a detailed list of characteristics common to effective pedagogical tools

used in introductory programming courses offered in secondary schools, community

colleges, and 4-year colleges and universities

• to make inferences about the characteristics of a useful and/or effective tool in the

teaching and learning of programming

• to make inferences about the characteristics of a tool that is considered ineffective

or detrimental in the teaching and learning of programming

www.manaraa.com

67

• to make inferences about the a tool’s adoption by introductory programming

teachers

The online survey design and implementation followed five methodological components

that are critical to successful Web-based surveys [9]:

1. survey design

2. subject privacy and confidentiality

3. sampling and subject selection

4. distribution and response management

5. survey piloting

Each of these components is addressed below with respect to the survey used in this study.

6.3.2 Survey Design and Development

The survey questions were developed using information gathered from the literature

review presented in Chapters 4 and 5 of this dissertation. This review presented the goals

of tool developers, the results of past research on pedagogical tools, and the results of

research focusing on learning styles and teaching pedagogies. Combining empirical results

and anecdotal evaluations of previous studies, the goals of tool developers, and this

researcher’s personal experience, a listing of characteristics that may contribute to a tool’s

effectiveness (positively or negatively) was developed. From this list, the survey questions

were assembled and organized. Table 1 gives an example of a mapping between the goals

of Sanders and Dorn [200], the developers of Jeroo, and select survey questions. The

complete mapping for the survey questions can be found in Appendix D.

The survey is divided into the ten pages briefly described below. The complete survey can

be found in Appendix A of this dissertation.

1. General Information: What tool is being used and why was the tool was initially

chosen?

www.manaraa.com

68

Developer’s Goals Survey Questions

easy to use has an intuitive interface and has
a learning curve that is not too steep

engages students immediately supports students active engagement
in learning activities

provides students with a better supports an understanding of abstract concepts
understanding of programming helps understanding of program execution
concepts

increases student satisfaction and Students enjoy using this tool.
enthusiasm for programming The initial experience of this tool positively

affects subsequent programming courses.

Table 1: Mapping of Developers’ Goals with Survey Questions (example)

2. Tool Characteristics: What are the general characteristics believed to contribute to

the effectiveness of the tool and which of these characteristics are perceived to be

the most significant contributors? The characteristics in this category focus on the

user interface of the tool and student interaction.

3. Programming Characteristics: What are the characteristics dealing with

programming, testing, debugging, and interaction believed to contribute to the

effectiveness of the tool and which of these characteristics are perceived to be the

most significant contributors?

4. Learning and Teaching: What are the characteristics relating to student learning

and teaching methodology that are perceived to contribute to the effectiveness of

the tool and which of these characteristics are believed to be the most significant

contributors?

5. Materials and Tool Summary: What are the characteristics specific to auxiliary

materials and perception about the use of the tool in the course that contribute to

the effectiveness of the tool and which of these characteristics are believed to be the

most significant contributors?

6. Negatives: What are the perceived negative aspects (if any) of the tool environment

www.manaraa.com

69

that hinder either teaching or learning?

7. Training and Experience: What amount of training in the use of the tool was

available and/or provided and how much experience does the teacher have using the

tool?

8. Your Course: Information was collected about the course in which the tool is being

used.

9. About You: Demographic information was collected.

10. More about You: Optional contact information was collected.

In addition to dichotomous questions, the survey includes multiple choice (multiple

answers), multiple choice (single answer), and rating (Likert scale) questions. The

multiple choice questions allowed for a choice of other with an open ended response box.

The only question on the survey that required an answer was the identification of the tool

that was being evaluated.

The survey was physically created using SurveyMonkey [210], a tool that allows for the

development and deployment of on-line surveys and the collection and analysis of the

results of these surveys.

6.3.3 Subject Privacy and Confidentiality

An Internet survey is naturally suspect of threatening an individual’s privacy and the

confidentiality of data that are collected through the survey. Privacy refers to the

individuals’ right to control access to themselves, freedom from unauthorized intrusion

[43, 46, 156]. For this study, the initial contact for many of the respondents was a personal

email request or an email sent to a listserve whose membership is composed of computing

educators. Although the email may have been considered an intrusion, the survey was

voluntary and teachers could choose not to participate.

Confidentiality refers to data. It refers to the obligation to inform research subjects how

their data will be used. The survey introduction explained the purpose of this research.

www.manaraa.com

70

Although there were questions that asked for name, affiliation, and email address, these

questions were optional and a statement on this page of the survey informed the

respondent that this information will be kept private and the respondent will not be

identified in any publication or presentation of the study findings.

SurveyMonkey assists with the technical aspects of privacy and confidentiality in the

nature of their tool. The following commitment is taken from their product description.

We employ multiple layers of security to make sure that your account and
your data remains private and secure. We employ a third-party firm to
conduct daily audits of our security, and your data resides behind the latest in
firewall and intrusion prevention technology. For extra sensitive surveys, you
can add SSL to your account, so that your data is collected in a totally
encrypted environment.

In an age where personal data is traded like a commodity, SurveyMonkey
pledges to respect your privacy. Any data that you collect is kept completely
and absolutely confidential. We have never been affiliated with any
third-parties, and we never accept any advertising [210].

6.3.4 Sampling and Subject Selection

As stated in Chapter 3, this study does not represent a random sampling of teachers. The

technique used for sampling was a non-probability method known as purposive sampling

[46]. This type of sampling selects subjects because of some defined characteristic(s) [173].

In this study, the surveyed teachers satisfied one or more of the following criteria:

• The teacher graded the Advanced Placement Computer Science (AP CS)

Examination in June 2008 and expressed a willingness to participate in this study

• The teacher is a member of the AP CS Electronic Discussion Group (AP CS EDG)

• The teacher was an attendee at SIGCSE 2009

• The teacher was a participant in a teacher workshop or summer institute presented

by this researcher between 2003 and 2008.

www.manaraa.com

71

This sample is satisfactory for the needs of this research and has been chosen for a specific

purpose of identifying the perceptions these teachers have about pedagogical tools used in

introductory programming classes. This sample does not pretend to represent the wider

population of all programming instructors or even of all introductory programming

instructors. The sample is deliberately selective and biased. Purposive sampling was used

in order to access knowledgeable people. In this study, the responses of the sample were

not taken to generalize to the population but rather to acquire in-depth information from

those who are in a position to give it [46]. The teachers surveyed are most likely at a

higher level of professional involvement in professional conferences, professional

development workshops and activities, and discussion groups focusing on computer science

education.

6.3.5 Distribution and Response Management

An Internet survey reduces the time to distribute, gather data, and process the data. The

management of the responses was done automatically by SurveyMonkey. This online

survey allowed for the respondents to complete it at a time that was convenient to them,

minimizing any organizational constraints on the researcher’s part.

To simplify the introduction of the survey, and to acquire a response rate, two initial

emails were sent. The purpose of the first email was primarily to eliminate from a list of

respondents those whose emails bounced. This email informed the recipients that a

request to complete a survey would be sent to them soon. This allowed the recipients to

respond and request not to be included in the survey. The second email was a detailed

explanation of the survey and the survey link.

The individual e-mail solicitations were sent to people whose email addresses were in the

researcher’s contact list and who satisfied the criteria listed for the survey sample in

section 6.3.4. The initial email invitation was sent to 173 computer science educators. The

request was for the survey to be completed within four weeks. There were two short

reminders sent to those on this individual mailing list that had not responded, one sent

www.manaraa.com

72

two weeks after the first email and the last sent four days before the requested completion

date. Identifying oneself was optional and several teachers completed the survey for more

than one tool so the exact response rate from the initial invitation can not be accurately

determined. At least 116 of those initially invited (67%) completed the survey between

February 3, 2009 and March 1, 2009. There were 166 responses to the initial invitation.

The individual solicitation was followed by solicitation to the Advanced Placement

Electronic Discussion Group (mailing list). Approximately 1,950 teachers subscribe to this

mailing list. The survey remained open for responses until June 24. Fifty-eight additional

surveys were completed. A total of 224 surveys in all were completed from February 2,

2009 to June 24, 2009. Appendix B contains the text of the emails.

6.3.6 Survey Piloting

Following the procedure of Cohen [46], a pre-pilot of the survey was conducted to focus on

format and coverage of the survey questions, gaining feedback from a limited number of

respondents and experts in the field of computer science education. This pre-pilot study

included six programming teachers representing both secondary school teachers and

university faculty, some of whom were experienced in question design, survey

development, and educational research. The purpose of the pre-pilot was to eliminate

ambiguities and difficult wording, to check the clarity of questionnaire items, to gain

feedback on the types of questions and their formats, to identify omissions, redundant and

irrelevant items, and to check the length of the survey.

Significant revisions were made based on the suggestions of the pre-pilot participants. The

survey was then sent to a pilot group of ten additional respondents before the final version

of the survey was open. Only minor changes were made as a result of the suggestions from

those participating in the pilot study.

www.manaraa.com

73

6.4 Stage 2: Interviews with Teachers

6.4.1 Introduction

Interviews with teachers were aimed at capturing thoughts and perceptions about the

different pedagogical tools used by teachers in introductory programming classes. The

interviews are meant to solicit perceptions rather than collect quantitative information.

Through interviews, data pertaining to the underlying motivations and implications of

using tools were collected.

6.4.2 Interview Design and Development

Each interviewee took part in a one-to-one phone or in-person interview that lasted

approximately twenty minutes. The interview was a standardized open-ended interview

[46, 212]. In this type of interview, the exact wording and sequence of questions are

determined in advance. All respondents are asked the same basic questions in the same

order. Questions are worded in a completely open ended format. This interview type was

chosen to increase comparability of the responses and to reduce interviewer effects and

bias. The interviewer adhered to the following guidelines for conduct of interviews

suggested by Cohen [46].

The interviewer followed the guidelines for structured interviews described by Denzin [58]:

• A standardized explanation about the study was given at the beginning of the

interview.

• There was no deviation from the interview introduction, sequence of questions, or

question wording.

• There were no interruptions during the interview process.

• Answers were never suggested, agreed with, or disagreed with. Personal views of the

interviewer were not given.

• Categories were not added and wording of questions was not changed.

www.manaraa.com

74

The interviewer played a neutral role, not interjecting opinions of the respondent’s

answers. A balanced rapport was established at the beginning of the interview; the

interviewer was friendly and casual but directive and impersonal when asking the

interview questions providing a style of interested listening that rewards the respondent’s

participation but does not evaluate the respondent’s answers [58].

The questions for the teacher interviews were based on the responses to the teacher

survey. Where the survey asked questions about a particular tool, the interview focused

on characteristics that are shared (or not shared) by tools within a category and across

different categories. Questions delved into the teacher’s motivation for choosing the tool,

the motivations for continuing to use the tool (or not), and teacher training in using the

tool and integrating the tool into the curriculum. The interviews also queried teachers on

the positive and negative aspects of tools they choose to use (or consciously choose not to

use) in their introductory programming courses.

6.4.3 Subject Privacy and Confidentiality

The purpose of the interview was explained in an email invitation and again at the

beginning of the interview. Since the teacher had volunteered to take part in the

interview, the email should not be viewed as an unauthorized intrusion that violates the

individual’s privacy. All interviews were recorded with the permission of the respondent.

This permission was given in an email response confirming the interview and again at the

beginning of the interview. The interviewee was encouraged to ask any questions that

would clarify any doubts about the interview or the research study. The interviewee was

informed that personal names or names of affiliate institutions would not appear in any

written report or in any presentation of this study.

6.4.4 Sampling and Subject Selection

There were fifty-one respondents to the teacher survey who indicated using (or choosing

not to use) at least five pedagogical tools in their introductory programming classes. The

sample for the interviews was purposefully selected from these fifty-one teachers using a

www.manaraa.com

75

process known as extreme case sampling [48]. Extreme case sampling focuses on cases that

are rich in information and do not necessarily display the average teacher’s experience

with pedagogical tools. This interview sample will highlight information that may be less

obvious when looking at teachers having experience with only a small number of tools.

A spreadsheet was created to track tools used by each of the fifty-one individuals. Using

this spreadsheet, the data were sorted according to the number of tools used (or

consciously chosen not to use). In evaluating the sorted list, interview priority was given

to those teachers that ranked high in the sorted list and also ranked high across

categories. For example, if a Teacher#1 used six tools but five out of the six tools were

IDEs and teacher#2 used six tools where two were microworlds, two were IDEs, one was

game making software, and one was a software library, Teacher#2 would be given

interview priority over Teacher#1. A list containing the names of eleven teachers that

included six high school teachers, four university/college faculty, and one middle school

teacher was developed. These eleven teachers were invited, via email invitation, to be

interviewed for this study. All eleven accepted.

6.4.5 Interview Process and Response Management

An appointment was made with the interviewees via email. The interview duration varied

from 15 to 35 minutes. The interviews were recorded with permission and then

transcribed. The interviews were transcribed in a two-step process. The audio tapes were

initially transcribed smooth verbatim (crutch words eliminated) by Hi-Tech [97] or

Accentance, Inc. [1], both on-line transcription service providers. The transcribed text

was then manually reviewed by the researcher against the original audio taped interview

for accuracy. The written text was corrected when necessary. When transcribing and

analyzing the responses to the survey, the respondents were identified by a unique

identification code. To facilitate the coding and analysis, the question data was identified

using question number and interviewee identification code. This process allowed for

identifying major themes, common issues, and patterns of repeated perspectives both

within and across the questions [51, 75, 207]. This study employs a descriptive method of

www.manaraa.com

76

reporting the interview data.

6.5 Stage 3: Interviews with Tool Developers

6.5.1 Introduction

Interviews with selected tool developers or members of the tool development team were

aimed at capturing the developer’s pedagogical goals in the tool’s design and development.

The interviews are meant to solicit information about the pedagogical tool, offering a

different perspective on the tool use and the tool adoption in the introductory

programming course. Does the tool developer have the same goals in designing the tool as

the teachers have when adopting the tool? Through interviews with tool developers, data

pertaining to the underlying motivations and implications of the tool use were collected.

6.5.2 Interview Design and Development

Each interviewee took part in a one-to-one phone or in-person interview that lasted

approximately twenty minutes. The interviews with the tool developers were

semi-structured interviews [70]. In this type of interview, the overall structure was

planned by the researcher in advance, with a script of main questions. The order of the

questions was altered to adapt to the respondent’s answers. The respondent was given

considerable freedom of expression but the interviewer controlled the interview to ensure

coverage. The interviewer played a neutral role. This type of interview allowed the

researcher to obtain specific qualitative information from the respondent, to obtain

general information relevant to specific issues dealing with pedagogical tools in

introductory programming courses, and to gain a range of insights dealing with the

design, development, and use of the interviewee’s specific pedagogical tool.

The questions for the toolmaker interviews were designed to investigate the motivation

behind the creation of the tool, the tool developers’ perceived value of the tool, and the

toolmakers intended use for the tool. There is a wide-range of pedagogical tool use in

introductory programming courses. The researcher is seeking information from the

toolmakers that will add insight about the characteristics of successful tools and about the

www.manaraa.com

77

successful methods of tool dissemination.

6.5.3 Subject Privacy and Confidentiality

The purpose of the interview was explained at the beginning of the interview. All

interviews were recorded with the permission of the respondent. The interviewee was

encouraged to ask any questions that would clarify any doubts about the interview or the

research study. The interviewee was informed that personal names would not appear in

any written report or in any presentation of this study. All interviewees granted permission

for the tool name to be used in the discussion of the interviews and analysis of the results.

6.5.4 Sampling and Subject Selection

A purposive convenience sampling was used for the tool developers interviews. Only tool

developers of pedagogical tools used in introductory programming classes and tools that

were listed on the teacher survey were considered. From the list of 29 tools on the survey,

six tool developers were invited to be interviewed. All accepted. The interviewees were

primary developers or members of the development teams of the following tools: Alice,

BlueJ/Greenfoot, Java Task Force Library, Jeroo, Karel J. Robot, and ObjectDraw. Since

the researcher and many of the tool developers were in attendance at the Special Interest

Group in Computer Science Education (SIGCSE) 2009 Symposium in March 2009, most

of the interviews with the developers were conducted at the symposium.

6.5.5 Interview Process and Response Management

The interview duration varied from 10 to 25 minutes. As stated above, most of the

interviews were conducted at the Special Interest Group in Computer Science Education

(SIGCSE) 2009 Symposium in March 2009. Two of the interviews were conducted via

telephone and one interview was conducted in-person at a pre-arranged interview

appointment. The interviews were recorded with permission and then transcribed. As with

the teacher interviews, the recorded interviews with the tool developers were transcribed

in a two-step process. The audio tapes were initially transcribed smooth verbatim (crutch

words eliminated) by Accentance, Inc. [1], an on-line transcription service provider. The

www.manaraa.com

78

transcribed text was then manually reviewed by the researcher against the original audio

taped interview for accuracy. The written text was corrected when necessary. When

transcribing and analyzing the responses to the survey, the respondents were identified by

a unique identification code. To facilitate the coding and analysis, the question data was

identified using question number and interviewee identification code. This process allowed

for identifying major themes and sub themes both within and across the questions

[51, 207]. This study employs a descriptive method of reporting the interview data.

6.6 Summary

By employing a mixed methods approach that implements both a sequential method

design (survey followed by teacher interviews) and a parallel method design (tool developer

interviews), information about tool characteristics, tool adoption, and information

dissemination is collected. This research design yields results that provide information to

tool developers when developing or modifying tools and provides a reference to teachers

choosing pedagogical tools to integrate into their introductory programming courses.

www.manaraa.com

79

Chapter 7

Results

7.1 Introduction

The primary goal of this study is to discover characteristics that teachers perceive

contribute to the effectiveness of a pedagogical tool used in introductory programming

courses. The purpose of this study is to provide guidance to teachers when evaluating

tools for introductory programming classes and to provide tool developers with feedback

from the teachers who use these tools with hopes that future tools will be designed and

developed to meet teacher and student needs in the introductory programming classes.

By analyzing the responses to the survey and interviews, the hypotheses that were

presented in section 3.5 will be addressed. The results of this study are based on the

perceptions of computer science educators:

1. Using pedagogical tools in introductory programming classes eases and promotes

the learning of programming.

2. Using pedagogical tools in introductory programming classes eases and promotes

the teaching of programming.

3. Effective pedagogical tools used in introductory programming classes have common

characteristics.

4. Tools that teachers consciously choose NOT to use in introductory programming

classes have common characteristics.

5. Teachers initially choose to use a pedagogical tool because of a perceived

task-technology ”fit.”

This chapter reports the results of the survey and interviews involved in this study. The

results of this study provide perceptions of a limited population of introductory

www.manaraa.com

80

programming teachers. The teachers surveyed are most likely at a higher level of

professional involvement in professional conferences, professional development workshops

and activities, and discussion groups focusing on computer science education than the

general population of introductory programming teachers. Chapter 8 discusses the survey

results together with the interview data and Chapter 9 summarizes the results in

addressing each hypothesis.

7.2 Teacher Survey Results

The purpose of the teacher survey was

• to obtain a detailed list of characteristics common to effective pedagogical tools

used in introductory programming courses offered in secondary schools, community

colleges, and 4-year colleges and universities

• to make inferences about the characteristics of a useful and/or effective tool in the

teaching and learning of programming

• to make inferences about the characteristics of a tool that is considered ineffective

or detrimental in the teaching and learning of programming

• to make inferences about the a tool’s adoption by introductory programming

teachers

The complete survey can be found in Appendix A. Section 6.3 describes the procedure

used to formulate the survey questions.

A completed survey depicts the teacher’s perceptions about one specific tool. If the

teacher has experience with more than one tool, the completion of multiple surveys was

requested, one survey for each tool used. The question format for identifying the tool

being evaluated provided a drop-down menu with a choice of twenty-nine tools plus a

choice of other where the name of the tool was supplied by the respondent. The tools

evaluated by teachers completing this survey appear in Table 2. There were 19 tools

included in the pull-down menu that were not evaluated by any respondent. These tools

www.manaraa.com

81

are: Buggles and Bagels, CodeWiz, Greeps, JamTester, ACM Java Task Force Graphics,

Jeliot 3, JHAVE, JPie, Java Power Tools, PigWorld, Robotran, XTango, and Zeus. A

total of 224 surveys were collected from at least 121 different individuals. Since providing

a name was optional, the exact number of distinct individuals can not be determined.

Tool Being Evaluated Percent Number of
Responding Responses

Alice 21.4% 48

BlueJ 21.0% 47

Eclipse 8.0% 18

JCreator 7.6% 17

GridWorld 4.9% 11

jGRASP 5.4% 12

Karel J. Robot 4.0% 11

DrScheme 3.6% 8

NetBeans 3.1% 7

DrJava 2.7% 6

JUnit 2.2% 5

ObjectDraw 2.2% 5

Jeroo 1.8% 4

Greenfoot 1.8% 4

GameMaker 0.9% 2

Raptor 0.9% 2

Scratch 0.9% 2

MediaComp 0.4% 1

Lego Mindstorms 0.4% 1

other 5.8% 13

answered question 224
skipped question 0

Table 2: Tools evaluated through this survey by teachers of introductory programming
classes

www.manaraa.com

82

The choice of ‘other’ allowed for a write-in response. These responses included: Stagecast

Creator, Javabat, Visual Basic, Visual C++, IDLE, Textpad, pcGrasp, Visual Studio,

Visual C#, GIMP, Professor J, and Intellibrain with only Visual Basic being listed

multiple times (3). The results presented in Table 2 noticeably identify two tools, Alice

and BlueJ, with much higher response rates than the others. This does not translate into

these two tools being used more than others. Table 2 simply reports that more teachers

chose to evaluate Alice and BlueJ than evaluating the other tools they may or may not be

using in their classes. To obtain a better picture of what tools are being used or chosen

not to be used in introductory programming courses, the responses of the 121 teachers

who chose to identify themselves are summarized in Table 3. This summary is the result

of creating a spreadsheet of tool use where each teacher was listed along with the tools

used or chosen not to be used by that teacher. By considering only the 121 identified

survey responses, there is no duplication of data and an accurate account of tool use for

those 121 teachers is obtained.

The results of the survey will be reported first by looking at the cross category summary

of the survey responses and then by looking at the aggregation of the results of the

individual tool categories described in Section 3.1. The presentation of the results is

divided into several subsections, each referencing a different page (focus) of the survey.

1. General information about choosing to use the tool

2. Overall tool characteristics

3. Tool characteristics focusing on programming environment, testing, and interaction

4. Tool characteristics contributing to the learning to and the teaching of programming

5. Materials, support, and teacher perception of tool use

6. Perceived negative characteristics of the tool

7. Training and Experience of the respondent

8. Demographics of respondent

www.manaraa.com

83

Primary Tool Tool Number choosing to Number choosing not Total
Category use tool to use tool

GridWorld 51 2 53

Alice 41 8 49

Microworlds Karel J. Robot 25 11 36

GreenFoot 9 4 13

Jeroo 7 2 9

BlueJ 48 14 62

Eclipse 34 13 47

JCreator 26 10 36

IDEs
DrJava 12 5 17

DrScheme 7 10 17

jGRASP 10 5 15

NetBeans 10 4 14

JBuilder 0 2 2

Object Draw 13 2 15

Libraries MediaComp 5 1 6

JTF 1 0 1

Visualization Jeliot 3 2 1 3
Tools Raptor 2 0 2

Robots Lego Mindstorms 13 4 17

Game Making Game Maker 3 1 4

JUnit 12 0 12

Scratch 7 1 8
Other JavaBat 2 0 2

JamTester 4 0 4

Table 3: Tools chosen to be used or chosen not to be used by teachers

www.manaraa.com

84

Of the 224 completed surveys, 83% evaluated a tool presently being used in the class

(users) while the remaining 17% evaluated tools that are not being used (non-users). The

non-users have consciously chosen not to use the tool and may or may not have previously

used the tool. The cross category summary will report the results of three groups, the

total, the users, and the non-users.

Providing demographic information was optional. Of the 224 completed surveys, 100 were

identified as being completed by males and 81 were identified as being completed by

females. The cross category summary will report the results of both genders when they

differ from the total results.

Introductory programming courses are taught in middle schools, high schools, and in

colleges. Of the 224 completed surveys, 129 were completed by those teaching in

secondary schools (grades 7 - 12) and 59 were completed by those teaching in a two- or

four- year college. The cross category summary will report the results of the two groups,

secondary school teachers and those teaching in colleges or universities, when they differ

from the total results.

The aggregation summary will report the results for each of the questions by tool

category: Microworlds, Libraries, IDEs, and Visualization Tools.

7.2.1 Survey Question Types

The survey contained the following question types:

• Choice Questions: Multiple Answers

Many of the survey questions direct the respondents to check items that satisfied

certain criteria chosen from a list of given items. The respondent could choose to

check zero or more items from this list. The respondent could select a choice of

other to write-in a response that was not included in the given list. Since the

purpose of this study is to determine the characteristics that teachers perceive to

contribute to the effectiveness of a tool, the results summary identifies the responses

www.manaraa.com

85

that are chosen in a majority of the completed surveys. A majority is a subset that

is more than 50% of the group responding. If no item was chosen by a majority, the

top three items are listed.

• Choice Questions: Single Answer

Many of the survey questions direct the respondents to check only one item from a

given list of items or from the list of items predetermined from the respondent’s

answers to a multiple answers question. The results list those items that were

chosen by more than 50% of the total surveys completed. If no item was chosen by

a majority, the top three items are listed.

• Ranking Questions

Many of the survey questions ask respondents to rank the top three items, in order

of importance, chosen from a list of items. This study uses the Borda method [228]

to determine the top three items ranked by the survey responses. This method of

partial ranking is explained in Section 7.2.2. The results will list the top three

ranked characteristics as determined by the group being surveyed.

• Dichotomous Questions

This is a question in which the respondent chooses one of two possible responses.

The results will be presented as the percentage of completed surveys choosing each

answer.

• Likert Scale Questions

This survey included several 5-point Likert scale questions with answer choices

ranging from ‘strongly agree’ to ‘strongly disagree’. The respondents are asked to

specify their level of agreement to a statement. The data are summarized by

presenting the descriptive statistics that includes the frequency count for each

choice, the median, the mode, the mean, and standard deviation.

• Open Ended

The survey included a few open-ended questions asking the respondents for

www.manaraa.com

86

additional information. The results are presented in list format.

7.2.2 Analysis of Rank Data

Many of the survey questions asked teachers to rank the top three characteristics in order

of importance. This study uses the Borda method to determine the top three

characteristics ranked by the survey responses. The Borda method has several advantages

including simplicity, computational efficiency, and a minimum of voting paradoxes, but it

also has some inherent limitations: (1) It is defined for equal attribute weight only; and

(2) it does not handle inexact, uncertain and fuzzy data [134]. The data collected by this

survey tool is ordinal in nature and for the purpose if this study, the ranking of the

ordinal values is sufficient thus minimizing the limitation of (1). The choices are discrete

choices so (2) does not negatively affect the results when this method is applied.

The Borda method is based on an algorithm for priority ordering and is used in this study

as a ranking method in which a list of characteristics is ranked based on information

gathered from the survey responses. The method used is based on algorithms explained

and used in various studies involving ranked and partially ranked data [63, 113, 134, 164].

The specific approach and algorithm used is explained below.

Suppose there are N survey responses and K characteristics. A preference order of

characteristics is supplied by each survey response ranking the top three characteristics as

most important, second most important, and third most important. The rankings 4-th to

k-th are considered to be ranked equally (non-rankings) in this study. For each survey

response, points K - 1, K - 2, and K - 3 are assigned to the first-ranked, second-ranked,

third-ranked characteristics respectively. For example, if there is a total of 14

characteristics, 13 points are assigned to the first-ranked, 12 points are assigned to the

second-ranked, and 11 points are assigned to the third-ranked characteristic. The number

of points assigned to a particular characteristic is the number of characteristics ranking

below it. The final preference ordering of the top three characteristics is determined to be

the three characteristics with the highest total points from all survey responses. In other

www.manaraa.com

87

words, if rij is the rank of the i-th characteristic of the j-th response, the Borda count, bi,

for this i-th characteristic is

bi =
∑N

j=1 (K − rij).

The characteristics are then listed in decreasing order of the Borda counts. Ties are

handled by evaluating the rank for a tied alternative as the average of the associated

rankings [134]. Since the non-ranked characteristics are considered equal, the rank

associated with each is

ri = 1
K−3

∑K−4
j=0 j = K−4

2 ,

the average of the associated rankings. Ranks were assigned to each characteristic in each

survey response. This is essential to avoid any plurality pitfalls [164].

7.2.3 Cross Categories Summary

The cross categories summary is reported with no consideration given to the individual

tool or specific category of the tool being evaluated. All responses to each question are

included in this summary of the results.

The purpose of this study is to determine the common characteristics perceived by

teachers to contribute to the effectiveness of pedagogical tools used in introductory

programming classes. All tools do not necessarily share all characteristics. A particular

characteristic may simply not be applicable to the tool and its primary purpose. As

examples, the IDE, Eclipse, does not involve storytelling; Jeroo, by design, does not does

not provide for support of data types, variables, or user-provided input [200]. Tool

developers may have consciously chosen not to incorporate certain aspects into their tools.

However, certain characteristics may be perceived as important enough to teachers that, if

available in a tool, would increase the effectiveness of the tool in an introductory

programming class. Several questions in the survey asked teachers to list, in priority

order, those characteristics (if any) that the tool should support thus resulting in

improving the effectiveness of the tool. The parenthesized “if any” may have led to lower

www.manaraa.com

88

response rates for this question. In the case where the tool was considered to include all

necessary characteristics, this question would not have been answered.

7.2.3.1 General Information About Choosing to Use the Tool

The first section of the survey identified the tool being evaluated and the reasons for the

teacher’s initial decision to use this tool in an introductory programming course.

Reasons for initially choosing to use this tool in an introductory programming
course

This question was answered by 99% of those being surveyed. The question allowed for

multiple answers. Of the eight given reasons for initially choosing to use this tool in an

introductory programming course, the ones chosen in more than 50% of the completed

surveys were:

• to introduce programming in a more enjoyable way (65.8%)

• recommended to me by other computer science educators (60.8%)

The responses of the users and the non-users agreed with the total responses in identifying

these two reasons with a majority of the non-users including a third reason,

• to attract a diverse group of students (56.8%)

Males and females responded to this question with the same choices as the total, as did

the secondary school teachers. Those teaching in colleges and universities differed in the

response to this question. The reasons for initially choosing this tool identified by more

than 50% of the college surveys completed were:

• to introduce programming in a more enjoyable way (66.7%)

• task-technology fit (54.4%)

• tool complements my learning style (52.6%)

When asked to identify the most influential reason for choosing to use this tool in an

introductory programming course,

www.manaraa.com

89

• to introduce programming in a more enjoyable way

was selected most often by all groups: total survey responses, users, non-users, males,

females, secondary school teachers, and college teachers.

7.2.3.2 Overall Tool Characteristics

This section queried teachers about the general tool characteristics that are perceived to

be significant contributors to the effectiveness of the tool.

Characteristics of the tool that are perceived to contribute to the tool’s
effectiveness

The characteristics in this category focus on the user interface of the tool and student

interaction. Multiple answers were permitted. The question was answered in 91% of the

total surveys completed. The characteristics identified to contribute to the effectiveness of

the tool in more than 50% of those surveys were:

• improves first-time programmer’s experience (75.4%)

• has a learning curve that is not steep (74.4%)

• supports an interactive environment (71.9%)

• has an intuitive interface (62.6%)

• is flexible (allows use at many different levels of learning) (59.1%)

• embodies ideas that support core programming concepts (57.1%)

• includes graphical components (54.2%)

The majority choices of the users were the same as the majority choices of the total survey

responses. The non-users list of majority choices did not include:

• is flexible (allows use at many different levels of learning) (42.4%)

• embodies ideas that support core programming concepts (45.5%)

www.manaraa.com

90

The majority choices of the males and the majority choices of the females agreed with the

majority choices of the total survey responses as did the majority choices of the the

secondary school teachers. While the responses of the college teachers agreed with most of

the choices of the total survey responses,

• includes graphical components (43.9%)

was not a majority choice of the college responses.

There was an 88% total response rate when asked to rank, in order of priority, the top

three of the characteristics contributing to the effectiveness of the tool. The responses of

the users (92% response rate) agreed with the total survey responses. The responses of the

non-users (76% response rate) differed. Table 4 lists, in order of priority, the rankings of

the top three characteristics perceived to contribute to the effectiveness of the tool in an

introductory programming class as determined by the total survey responses, the

responses of the users, and the responses of the non-users.

Rank Total Users Non-Users

1 improves first-time improves first-time supports an interactive
programmer’s programmer’s environment
experience experience

2 has a learning has a learning improves first-time
curve that is not curve that is not programmer’s
steep steep experience

3 has an intuitive has an intuitive includes
interface interface graphical

components

Table 4: Top three characteristics, ranked in priority order, that are perceived to
contribute to the tool’s effectiveness as determined by the total survey responses,
the responses of the users, and the responses of the non-users

When comparing the results by gender, the females responses (92.5% response rate)

agreed with the top three rankings of the total. The male responses (99% response rate)

ranked the characteristics contributing to the effectiveness of the tool slightly different

from the rankings of the total. In order of priority, the male and female rankings of the

www.manaraa.com

91

top three characteristics perceived to contribute to the effectiveness of the tool in an

introductory programming class are listed in Table 5.

Rank Total Males Females

1 improves first-time improves first-time improves first-time
programmer’s programmer’s programmer’s
experience experience experience

2 has a learning has a learning has a learning
curve that is not curve that is not curve that is not
steep steep steep

3 has an intuitive supports an has an intuitive
interface interactive interface

environment

Table 5: Top three characteristics, ranked in priority order, that are perceived to
contribute to the tool’s effectiveness as determined by the total survey responses,
the male responses, and the female responses

The responses of the college teachers (100% response rate) and the responses of the

secondary school teachers (94.5% response rate) agreed the total survey responses in the

ranking of the top three characteristics perceived to contribute to the effectiveness of the

tool.

Characteristics not adequately supported by the tool (if any such
characteristics are perceived to exist)

This study is concerned with the characteristics that teachers perceive to contribute to the

effectiveness of a tool. It is also concerned with the characteristics that teachers perceive

to be inadequately supported by the tool. When asked to rank, in priority order, the

characteristics that this tool should more adequately support (if there are any such

characteristics), there was a 36% total response rate, a 35% users response rate, and a

43% non-users response rate. Table 6 lists the characteristics that were identified as not

being adequately supported by the tool. The parenthesized “if any” may have led to lower

response rates for this question. In the case where the tool was considered to include all

necessary characteristics, this question would not have been answered. The two

characteristics ranked third in Table 6 for the total respondents had equal Borda numbers.

www.manaraa.com

92

Rank Total Users Non-Users

1 allows for easy transition allows for easy transition allows for easy transition
to a more robust to a more robust to a more robust
programming environment programming environment programming environment

2 is flexible(allows use is flexible(allows use improves a first-time
at many levels of at many levels of programmer’s experience
learning learning

3 supports abstraction supports abstraction supports a
concepts-first

improves a first-time approach
programmer’s experience

Table 6: Characteristics, in priority order, that are perceived to be inadequately supported
by the tool as determined by the total survey responses, the responses of the users,
and the responses of the non-users

Table 7 compares male (48% response rate) and female (28.4% response rate) rankings of

the characteristics that are perceived to be inadequately supported by the tool (if there

are any such characteristics). The two characteristics ranked third for the total had equal

Borda numbers as did the two characteristics ranked third for the female responses

Rank Total Males Females

1 allows for easy transition allows for easy transition allows for easy transition
to a more robust to a more robust to a more robust
programming environment programming environment programming environment

2 is flexible(allows use improves first-time incorporates
at many levels of programmer’s storytelling
learning) experience

3 supports abstraction has an intuitive is flexible (allows use at
interface many levels of learning)

improves a first-time
programmer’s experience supports abstraction

Table 7: Characteristics, in priority order, perceived to be inadequately supported by the
tool as determined by the total survey responses, the responses of the males, and
the responses of the females

The characteristics perceived to be inadequately supported by the tool (if there are any

such characteristics) by those teaching in college (33% response rate) and those teaching

in secondary schools (41% response rate) are listed, in priority order, in Table 8. The two

www.manaraa.com

93

characteristics ranked third for the total respondents had equal Borda numbers.

Rank Total College Teachers Secondary School Teachers

1 allows for easy transition allows for easy transition allows for easy transition
to a more robust to a more robust to a more robust
programming environment programming environment programming environment

2 is flexible(allows use has a learning curve supports
at many levels of that is not abstraction
learning) steep

3 supports abstraction improves a first-time includes
programmer’s experience graphical

improves a first-time components
programmer’s experience

Table 8: Characteristics, in priority order, perceived to be inadequately supported by the
tool as determined by the total survey responses, the responses of the college
teachers, and the responses of the secondary school teachers

7.2.3.3 Tool Characteristics Focusing on Programming Environment,
Testing, Debugging, and interaction

This section queried teachers about characteristics pertaining to the programming

environment, debugging, testing, and interaction.

Characteristics related to the programming environment that contribute to the
effectiveness of this tool

This question focusing on programming environment characteristics was answered by 85%

of the total surveys completed, 86% of the users, 81% of the non-users, 100% of the male

responses, 93.8% of the female responses, 100% of the responses of college teachers, and

96% of the responses of secondary school teachers. The only two characteristics dealing

with programming environment that were identified to contribute to the effectiveness of

the tool by more than 50% of the total survey responses are:

• simplifies the mechanics of programming (53.5%)

• supports visualization of OO concepts (50.1%)

The users majority choices agree with the total choices. The non-users, male responses,

and college teachers’ responses identified only one majority choice:

www.manaraa.com

94

• simplifies the mechanics of programming (50%, 59%, 63.2%, respectively)

The only majority choice of the female responses was:

• supports visualization of OO concepts (53.9%)

The programming environment characteristics identified to contribute to the effectiveness

of the tool by more than 50% of the responses of the secondary school teachers were:

• supports visualization of OO concepts (53.3%)

• provides multiple views at once (e.g. code window, animation, state) (51.6%)

Characteristics that relate to testing, debugging, and interaction that
contribute to the effectiveness of this tool

This question focusing on debugging, testing, and interaction was answered on 82% of the

total survey responses, 85% of the users’ responses, and 68% of the non-users’ responses.

The characteristics that relate to testing, debugging, and interaction identified to

contribute to the effectiveness of this tool by more than 50% of the total survey responses

are:

• supports comments and documentation (54.1%)

• supports debugging (53.6%)

• supports developing and testing of individual components (51.9%)

• gives immediate feedback about errors (50.3%)

• supports step-by-step evaluation of single programming statements (50.3%)

The majority results for the users and the male responses (95% response rate), were the

same as for the total. The was no characteristic relating to testing, debugging, and

interaction identified to contribute to the effectiveness of this tool by more than 50% of

the non-users.

www.manaraa.com

95

The only characteristic relating to testing, debugging, and interaction identified to

contribute to the effectiveness of this tool by more than 50% of the female responses (91%

response rate) was:

• supports comments and documentation (51.4%)

More than 50% of the college teachers’ responses (95% response rate) identified

• supports developing and testing of individual components (68.5%)

• supports debugging (61.1%)

• supports comments and documentation (57.4%)

• supports step-by-step evaluation of single programming statements (53.7%)

as contributing to the effectiveness of the tool while the majority of the responses of the

secondary school teachers (92% response rate) identified

• supports comments and documentation (53.8%)

• provides meaningful error messages (53%)

• supports debugging (50.4%)

• gives immediate feedback about errors (50.4%)

as characteristics relating to testing, debugging, and interaction that contribute to the

effectiveness of the tool.

A 77% total response rate identified the ranking of the top three characteristics, in order

of priority, pertaining to the programming environment, debugging, testing, and

interaction that contribute to the effectiveness of the tool. The rankings of the users (81%

response rate) agreed with that of the total survey responses. The non-users (62%

response rate) had a slightly different ranking. Table 9 compares the ranking results of the

total, the users, and the non-users. The Borda numbers were equal for the three

characteristics ranked third by the non-users.

www.manaraa.com

96

Rank Total Users Non-Users

1 supports visualization supports visualization simplifies the mechanics
of OO concepts of OO concepts of programming

2 simplifies the mechanics simplifies the mechanics prevents syntax
of programming of programming errors

3 supports developing and supports developing and supports the visualization
testing of individual testing of individual of state changes
components components

supports visual representation
of general programming concepts

supports the visualization
of program state

Table 9: Top three ranked characteristics, in priority order, that relate to testing,
debugging, and interaction that contribute to the effectiveness of this tool as
ranked by the total survey responses, the responses of the users, and the responses
of the non-users

The top three characteristics pertaining to the programming environment, debugging,

testing, and interaction that are perceived to contribute to the effectiveness of the tool as

ranked by male responses (96% response rate) and the female responses (79% response

rate) are compared to the rankings of the total survey responses in Table 10.

Rank Total Males Females

1 supports visualization simplifies the mechanics supports visualization
of OO concepts of programming of OO programming

2 simplifies the mechanics supports visualization supports developing and
of programming of OO concepts testing of individual

components

3 supports developing and supports developing and prevents syntax
testing of individual testing of individual errors
components components

Table 10: Top three ranked characteristics, in priority order, that relate to testing,
debugging, and interaction that are perceived to contribute to the effectiveness
of this tool as ranked by the total survey responses, male responses, and female
responses

The top three characteristics that relate to testing, debugging, and interaction that are

perceived to contribute to the effectiveness of this tool as ranked by the responses of the

www.manaraa.com

97

college teachers (96.5 response rate) and the responses of the secondary school teachers

(84.2% response rate) are compared to the rankings of the total survey responses in Table

11.

Rank Total College Teachers Secondary School Teachers

1 supports visualization supports developing and supports visualization
of OO concepts testing of individual of OO programming

components

2 simplifies the mechanics simplifies the mechanics simplifies the mechanic
of programming of programming of programming

3 supports developing and supports incremental provides multiple views
testing of individual development at once (e.g. code window,
components animation state)

Table 11: Top three characteristics that relate to testing, debugging, and interaction that
are perceived to contribute to the effectiveness of this tool as ranked by total
survey responses, responses of college teachers, and responses of secondary
school teachers

Characteristics dealing with programming environment, debugging, testing,
and interaction that are not adequately supported by the tool (if any such
characteristics exist)

44% of the total survey responses identified characteristics that are perceived to be

inadequately supported by the tool. Table 12 lists the top three characteristics (in priority

order) ranked by the total survey responses, the responses of the users, and the responses

of the non-users that are inadequately supported by the tool. The users’ responses had a

55% response rate and the non-users’ responses had a 41% response rate to this question.

The Borda numbers were equal for the two characteristics ranked third by the non-users.

Table 13 lists the characteristics, in priority order, that are perceived to be inadequately

supported by the tool as identified by the male responses (61% response rate) and female

responses(38% response rate) compared to the rankings of the total survey responses.

Table 14 compares the rankings identified by the total survey responses to the responses

of the college teachers (59.6% response rate) and the responses of the secondary school

teachers (46% response rate).

www.manaraa.com

98

Rank Total Users Non-Users

1 provides meaningful provides meaningful supports visualization
error messages error messages of OO concepts

2 supports visualization supports step-by-step supports visualization
of OO concepts evaluation of single of program code

programming statements

3 supports step-by-step supports an easy way supports visual representation
evaluation of single of including event-driven of general programming
programming statements programming concepts

supports debugging

Table 12: Characteristics, in priority order, that are perceived to be inadequately
supported by the tool as determined by the total survey responses, the responses
of the users, and the responses of the non-users

Rank Total Males Females

1 provides meaningful prevents syntax provides meaningful
error messages errors error messages

2 supports visualization provides meaningful supports an easy way
of OO concepts error messages of including event-

driven programming

3 supports step-by-step supports visualization supports visualization
evaluation of single of program code of OO concepts
programming statements

Table 13: Characteristics, in priority order, that are perceived to be inadequately
supported by the tool as determined by the total survey responses, the male
responses, and the female responses

7.2.3.4 Tool Characteristics Contributing to the Learning of and the
Teaching of Programming

This section queried teachers about characteristics pertaining to the learning of and

teaching of programming. Approximately 80% of the total survey responses identified

characteristics that contribute to the tool’s effectiveness as they relate to the students’

learning to program.

Characteristics identified to contribute to the tool effectiveness as they relate
to the student’s learning to program.

The characteristics that are perceived to contribute to student learning identified by more

www.manaraa.com

99

Rank Total College Teachers Secondary School Teachers

1 provides meaningful supports an easy way provides meaningful
error messages of including event- error messages

driven programming

2 supports visualization provides meaningful prevents
of OO concepts error messages syntax errors

3 supports step-by-step supports visualization supports step-by-step
evaluation of single of OO concepts evaluation of single
programming statements programming statements

Table 14: Characteristics relating to programming environment, debugging, testing, and
interaction, in priority order, that are perceived to be inadequately supported
by the tool as ranked by total survey responses, the responses of the college
teachers, and the responses of the secondary school teachers

than 50% of the surveys that had answers to this question include:

• supports students’ active engagement in learning activities (72.8%)

• engages students of different ability levels (64.4%)

• helps understanding of programming execution (60.6%)

• supports the understanding of abstract and complex concepts (54.4%)

• encourages learning through discovery (53.3%)

The users’ (83% response rate) majority choices and the college teachers’ (95% response

rate) majority choices agreed with the characteristics identified by the majority of the

total responses. The male (96% response rate) majority choices agreed with the

characteristics chosen by the majority of the total survey responses except did not include:

• encourages learning through discovery (47.9%)

The female (93% response rate) majority choices and the secondary school teachers (94%

response rate) majority choices agreed with the characteristics identified by the majority

of the total survey responses and also included:

• allows students to work at levels of their choice (57%)

www.manaraa.com

100

The non-users’ majority choices (73% response rate) identified only two characteistics

contributing to student learning:

• supports students’ active engagement in learning activities (70.4%)

• encourages learning through discovery (63%)

Characteristics identified to contribute to the tool’s effectiveness as it relates
to the teaching of programming

Characteristics perceived to contribute to the tool’s effectiveness as they relate to the

teaching of programming were identified by 79% of the total survey responses.

Characteristics that were identified by more than 50% of those responding to this question

include:

• is a good tool for classroom demonstrations (80.8%)

• can be used for the duration of the course (68.4%)

The users (82% response rate), the females (89% response rate), the males (96% response

rate), the college teachers (96% response rate), and secondary school teachers (91%

response rate) answered this question with the same majority results as the total.

The non-users’ (73% response rate) majority chose only:

• is a good tool for classroom demonstration (73.1%)

as contributing tot he effectiveness of the tool as it relates to teaching.

A 75% total response rate ranked the top three characteristics related to the learning and

the teaching of programming. These results are compared to the rankings of the users

(79% response rate) and the non-users (59% response rate) in Table 15. The Borda

numbers were equal for the two characteristics ranked first by the non-users.

Table 16 identifies the top three characteristics that are perceived to contribute the most

to the learning of and teaching of programming. The responses of the males (98%

response rate) and the responses of the females (78% response rate) are compared to the

total. The characteristics identified in Table 16 are listed in priority order.

www.manaraa.com

101

Rank Total Users Non-Users

1 supports students’ supports students’ supports students’
active engagement in active engagement in active engagement in
learning activities learning activities learning activities

engages students
of different
ability levels

2 can be used for can be used for encourages learning
the duration of the duration of through
the course the course discovery

3 engages students supports the
of different understanding of abstract
ability levels and complex concepts

Table 15: Characteristics that are perceived to support the learning and teaching of
programming as ranked, in priority order, by the total survey responses, the
responses of the users, and the responses of the non-users

Table 17 lists the rankings of the characteristics that are perceived to contribute the most

to the learning of and teaching of programming as identified by the responses of the

college teachers (98% response rate) and the responses of the secondary school teachers

(84% response rate). These rankings are compared to the rankings of the total survey

responses. The characteristics identified in Table 17 are listed in priority order.

7.2.3.5 Materials, Support, and Teacher Perception of Tool Use

Teachers choose to use a tool for a variety of reasons. One of the reasons may be related

to the auxiliary materials, teaching support, and technical support that is available.

Auxiliary materials and support

81% of the total survey responses identifdied characteristics specific to auxiliary materials

and support that are perceived to contribute to the effectiveness of the tool. The following

lists the characteristics chosen by the majority of the total respondents.

• This tool can be used independent of the textbook chosen. (84.5%)

• Materials about this tool can be found through on-line searches. (70.2%)

www.manaraa.com

102

Rank Total Males Females

1 supports students’ supports students’ supports students’
active engagement in active engagement in active engagement in
learning activities learning activities learning activities

2 can be used for supports the can be used for
the duration of understanding of abstract the duration of
the course and complex concepts the course

3 engages students can be used for encourages learning
of different the duration of through discovery
ability levels the course

Table 16: Characteristics that are perceived to support the learning and teaching of
programming as ranked, in priority order, by the total survey responses, the
male responses, and the female respondents

Rank Total Respondents College Teachers Secondary School Teachers

1 supports students’ supports students’ supports students’
active engagement in active engagement in active engagement in
learning activities learning activities learning activities

2 can be used for can be used for can be used for
the duration of the duration of the duration of
the course the course the course

3 engages students is a good tool engages students
of different for classroom of different
ability levels demonstrations ability levels

Table 17: Characteristics that are perceived to support the learning to and teaching of
programming as ranked, in priority order, by the total responses, the responses
of the college teachers, and the responses of the secondary school teachers

• Tutorials on using the tool are provided by authors or community. (63.5%)

• Technical support is provided by authors or community. (63.0%)

• Textbooks that incorporate this tool are available. (54.7%)

The responses of the non-users (81% response rate), the males (94% response rate), the

female (99% response rate), and the college teachers (100% respnse rate), identified the

same as characteristics relating to auxiliary materials and support as the total survey

responses. The responses of the users (82% response rate) and the secondary school

teachers (91% response rate) agreed with the total survey responses and also included the

www.manaraa.com

103

additional characteristic

• Instructor resources (PP presentations, sample problems and labs, syllabus) are

provided by authors or community. (51.3% (users), 52.8% (secondary school

teachers))

Overall perception of the tool

Teachers were asked for overall perceptions of tool use in an introductory programming

course. This question was answered in 75% of the total survey responses.

The characteristics describing the teacher’s overall perceptions of the tool chosen by more

than 50% of those responding included:

• Students enjoy using this tool. (77.2%)

• Using this tool eases and promotes the learning of programming. (76.6%)

• Using this tool eases and promotes the teaching of programming. (73.1%)

• After using this tool, your students are ready to extend their knowledge by

continuing on in a computer science curriculum. (72.5%)

• The initial experience with this tool positively affects subsequent programming

experiences. (65.3%)

The majority choices of the users (78% response rate), the males (94% response rate), the

females (88% response rate), the college teachers (93% response rate), and the secondary

school teachers (91% response rate) agreed with the majority choices of the total survey

responses.

The non-user (62% response rate) majority identified three characteristics as contributing

to the effectiveness of the tool:

• Students enjoy using this tool. (78.3%)

www.manaraa.com

104

• After using this tool, your students are ready to extend their knowledge by

continuing on in a computer science curriculum. (56.5%)

• Using this tool eases and promotes the teaching of programming. (52.2%)

In ranking the top three characteristics dealing with auxiliary material and support that

are perceived to be most significant, the total survey responses (71% response rate), the

users (74% response rate) and the non-users (81% response rate) responded similarly.

Table 18 shows these rankings.

Rank Total Users Non-Users

1 This tool can be This tool can be Students enjoy
used independent of used independent of using this tool
the textbook chosen the textbook chosen

2 Students enjoy Using this tool Materials about this
using this tool eases and promotes the tool can be found through

learning of programming on-line searches

3 Using this tool Students enjoy This tool can be
eases and promotes the using this tool used independent of
learning of programming the textbook chosen

Table 18: Characteristics dealing with auxiliary materials and support that are perceived
to contribute to the effectiveness of the tool as ranked by total survey responses,
the responses of the users, and the responses of the non-users

The rankings of the top three characteristics dealing with auxiliary material and support

that are perceived to be most significant for the effectiveness of this tool show that the

male responses (94% response rate) and the female responses (79% response rate) were

almost identical to the total survey responses. The only difference is the third ranked

characteristic of the male responses. Table 19 shows these rankings.

The responses of the college teachers (91% response rate) and the responses of the

secondary school teachers (85% repoonse rate) agreed with the rankings of the total

survey reponses for the characteristics dealing with auxiliary materials and support that

contribute to the effectiveness of the tool.

www.manaraa.com

105

Rank Total Males Females

1 This tool can be This tool can be This tool can be
used independent of used independent of used independent of
the textbook chosen the textbook chosen the textbook chosen

2 Students enjoy Students enjoy Students enjoy
using this tool using this tool using this tool

3 Using this tool Using this tool Using this tool
eases and promotes the eases and promotes the eases and promotes the
learning of programming teaching of programming learning of programming

Table 19: Characteristics dealing with auxiliary materials and support that are perceived
to contribute to the effectiveness of the tool as ranked by total survey responses,
the male responses, and the female responses

23% of the total survey responses, 22% of the responses of the users, and 27% of the

responses of the non-users identifed characteristics dealing with auxiliary material and

support that are perceived to be inadequately supported by the tool. The top three of

these characteristics (in priority order) are listed in Table 20.

Rank Total Users Non-Users

1 Instructor resources (PP Textbooks that Instructor resources (PP
presentations, sample incorporate this presentations, sample
problems,labs, and tool are available problems, labs, and
syllabus) are provided syllabus) are provided
by authors or community by authors or community

2 Textbooks that A mechanism for the Textbooks that
incorporate this tool sharing of materials is incorporate this
are available provided by authors or tool are available

community

3 A mechanism for the Instructor resources (PP Technical support
sharing of materials is presentations, sample is provided by the
provided by authors or problems, labs, and authors or the
community syllabus) are provided community

by authors or community

Table 20: Characteristics relating to auxiliary material and support, in priority order, that
are perceived to be inadequately supported by the tool as ranked by total survey
responses, the responses of the users, and the responses of the non-users

Table 21 reports the top three characteristics relating to auxiliary material and support

that are not adequately supported by the tool. The rankings of the total survey responses

www.manaraa.com

106

Rank Total Males Females

1 Instructor resources (PP Textbooks that Instructor resources (PP
presentations, sample incorporate this tool presentations, sample
problems, labs, and are available problems, labs, and
syllabus) are provided syllabus) are provided
by authors or community by authors or community

2 Textbooks that Instructor resources (PP Tutorials on using
incorporate this tool presentations, sample the tool are provided
are available problems, labs, and by authors or

syllabus) are provided community
by authors or community

3 A mechanism for the A mechanism for the A mechanism for the
sharing of materials is sharing of materials is sharing of materials is
provided by authors provided by authors provided by authors
or community or community or community

Table 21: Characteristics relating to auxiliary material and support, in priority order, that
are perceived to be inadequately supported by the tool as ranked by total survey
responses, the male responses, and the female responses

are compared to the male responses (30% response rate) and the female responses (30%

response rate). Table 22 compares the the total survey responses to the responses of the

college teachers (22.8% response rate) and the secondary school teachers (30%).

7.2.3.6 Negative Aspects of the Tool that may Hinder Teaching or Learning

This section queried teachers about characteristics of the tool that are perceived to hinder

the learning or the teaching of programming. The first two questions provided a response

choice of “no significant negatives.” The majority of all groups indicated that the tool

being evaluated had no significant negatives related to the tool environment, errors, or

support.

Characteristics relating to the tool environment that may hinder teaching and
learning

The first question in this section of the survey asked teachers to indicate the

characteristics relating to the tool environment that they perceive to either hinder

teaching or hinder the students’ learning.

• 71.4% of the total survey responses included an answer to this question with 54.4%

of those indicating that the tool had no significant negatives.

www.manaraa.com

107

Rank Total College Teachers Secondary School Teachers

1 Instructor resources (PP Instructor resources (PP Textbooks that
presentations, sample presentations, sample incorporate this tool
problems, labs, and problems, labs, and are available
syllabus) are provided syllabus) are provided
by authors or community by authors or community

2 Textbooks that A mechanism for the Instructor resources (PP
incorporate this tool sharing of materials is presentations, sample
are available provided by authors problems, labs, and

or community syllabus) are provided
by authors or community

3 A mechanism for the Textbooks that A mechanism for the
sharing of materials is incorporate this tool sharing of materials is
provided by authors are available provided by authors
or community or community

Table 22: Characteristics relating to auxiliary material and support, in priority order,
that are perceived to be inadequately supported by the tool as ranked by total
survey responses, the responses of the college teachers, and the responses of the
secondary school teachers

• 89% of the male responses included an answer to this question with 49.4% of those

indicating that the tool had no significant negatives.

• 84% of the female responses included an answer to this question with 60.3% of those

indicating that the tool had no significant negatives.

• 85% of the secondary school teachers’ responses included an answer to this question

with 55.6% of those indicating that the tool had no significant negatives.

• 87.7% of the college teachers included an answer to this question with 50% of those

indicating that the tool had no significant negatives.

• 70% of the users included an answer to this question with 60.9% of those indicating

that the tool had no significant negatives.

• 83.8% of the non-users included an answer to this question with 25.8% of those

indicating that the tool had no significant negatives.

Characteristics relating to errors and support that may hinder teaching and
learning

www.manaraa.com

108

The second question in this section of the survey asked teachers to indicate the

characteristics relating to errors and support perceived to either hinder teaching or hinder

learning.

• 74% of the total survey respondents included an answer to this question with 56% of

those indicating that the tool had no significant negatives.

• 92% of the male responses included an answer to this question with 53.3% of those

indicating that the tool had no significant negatives.

• 88% of the female responses included an answer to this question with 62% of those

indicating that the tool had no significant negatives.

• 88% of the responses of the secondary school teachers included an answer to this

question with 55.4% of those indicating that the tool had no significant negatives.

• 95% of the responses of the college teachers included an answer to this question

with 59.3% of those indicating that the tool had no significant negatives.

• 73% of the users’ responses included an answer to this question with 61.5% of those

indicating that the tool had no significant negatives.

• 81% of the non-users’ responses included an answer to this question with 33.3% of

those indicating that the tool had no significant negatives.

Although the majority of the responses indicated that the tool being evaluated had no

characteristic that significantly hindered teaching or learning, the one characteristic that

ranked in the top of those perceived as negative by all groups was:

• cryptic error messages (percentages ranging from 6.7% - 17.8%).

7.2.4 Aggregation: Summary of the Individual Tool Categories

This study is designed to determine the characteristics common to pedagogical tools that

are perceived by teachers to be successful. Do successful tools share common

characteristics? What are the characteristics that teachers perceive contribute to the

www.manaraa.com

109

effectiveness of a successful pedagogical tool? In order to better analyze the perceptions of

teachers regarding the characteristics of successful pedagogical tools used in introductory

programming courses, this section investigates the responses of the aggregation of tool

categories. The tool categories are defined in Section 3.1 of this dissertation. The number

of survey responses and the tools included in each category are identified below:

• Microwords (78): Alice, Greenfoot, GridWorld, Jeroo, and Karel J. Robot

• Libraries (6): ObjectDraw and MediaComputation

• IDEs (119): BlueJ, DrJava, Dr Scheme, jGRASP, Netbeans, Eclipse, JCreator, and

Greenfoot

• Visualizations (14): jGRASP and RAPTOR

• Robotics (1): Lego Mindstorms

• Games (2): Game Maker

Tools not mentioned in the above categories were not evaluated by any respondents and

therefore not included in the results and analysis of this study and because of the low

response rates for Robotics(1) and Game Maker(2), these two categories are not included

in the aggregate summary of the results.

7.2.4.1 General Information About Choosing to Use the Tool

This section of the survey identified the reasons that teachers initially choose to use a

pedagogical tool in an introductory programming class. Table 23 lists the reasons for

initially choosing to use the tool. The majority choice responses (choices that had more

than 50%) in each of the four tool categories are included in the table.

When asked to identify the one reason that was the most influential, responses in all four

tool categories identified this reason to be:

• to introduce programming in a more enjoyable way

www.manaraa.com

110

Microworlds Libraries IDEs Visualization Tools
99% response 100% response 99% response 100% response
rate rate rate rate

to introduce to introduce recommended to me to introduce
programming in a programming in a by other computer programming in a
more enjoyable more enjoyable science educators more enjoyable
way (89.6%) way (100%) (63.36%) way (57.1%)

to attract a recommended to me to introduce task-technology
diverse group by other computer programming in a fit (57.1%)
of students science educators more enjoyable
(66.2%) (66.7%) way (50%)

recommended to me
by other computer
science educators
(62.3%)

Table 23: Reasons for initially choosing to use this tool in an introductory programming
course chosen by a majority of the responses in each tool category

7.2.4.2 Overall Tool Characteristics

The characteristics in this category focus on the user interface of the tool and student

interaction.

Characteristics of the tool that are perceived to contribute to the tool’s
effectiveness

The characteristics perceived to contribute to the effectiveness of the tool by more than

50% of the responses in each tool category are displayed in Table 24. Table 25 lists, in

order of priority, the rankings of the top three characteristics perceived to contribute to

the effectiveness of the tool in an introductory programming class. The two characteristics

ranked second for Visualization Tools had equivalent Borda numbers.

Characteristics not adequately supported by the tool (if any such
characteristics are perceived to exist)

Also of interest is the teachers’ perceptions of the characteristics that are not adequately

supported by the tool. When considering the results by category, there were no responses

to this question by those evaluating Libraries and only two responses from those

evaluating Visualization Tools. Therefore, those tool categories are not included in Table

www.manaraa.com

111

Microworlds Libraries IDEs Visualization Tools
91% response 100% response 90% response 93% response
rate rate rate rate

supports an improves first-time has a learning has a learning
interactive programmer’s curve that is curve that is
environment (85.9%) experience (100%) not too not too

steep (74.8%) steep (100%)

improves first-time supports an improves first-time has an intuitive
programmer’s interactive programmer’s interface
experience (84.5%) environment (83.3%) experience (72%) (84.6%)

includes is flexible (allows supports an supports an
graphical use at many levels interactive interactive
components (84.5%) of learning) (83.3%) environment (65.4%) environment(84.6%)

has a learning embodies ideas that has an intuitive improves first-time
curve that is not support core interface (65.4%) programmer’s
too steep (74.6%) programming experience (84.6%)

concepts (83.3%)

embodies ideas that includes is flexible (allows is flexible (allows
support core graphical use at many levels use at many levels
programming components (83.3%) of learning) (58.9%) of learning) (76.9%)
concepts (69%)

supports a
concepts-first
approach (67.6%)

has an intuitive
interface (63.4%)

supports a consistent
metaphor (59.2%)

is flexible (allows
use at many levels
of learning)(59.2%)

Table 24: Characteristics relating to user interface and student interaction perceived to
contribute to the effectiveness of the tool by more than 50% of the responses in
each tool category

www.manaraa.com

112

Rank Microworlds Libraries IDEs Visualization Tools
87% response rate 100% response rate 88% response rate 93% response rate

1 improves first- improves first- has a learning has a learning
time programmer’s time programmers curve that is curve that is
experience experience not steep not steep

2 includes includes improves first- has an
graphical graphical time programmer’s intuitive
components components experience interface

improves first-
time programmer’s
experience

3 supports a embodies ideas has an
concepts-first that support core intuitive
approach programming concepts interface

Table 25: Top three ranked characteristics, in priority order, that are perceived to
contribute to the tool’s effectiveness as determined by responses for each tool
category

26, which identifies, in priority order, the top three characteristics that are not adequately

supported by the tool.

7.2.4.3 Tool Characteristics Focusing on Programming Environment,
Testing, Debugging, and Interaction

This section of the survey queried teachers about characteristics pertaining to the

programming environment, debugging, testing, and interaction. The results are displayed

as an aggregation of the separate tool category results.

Characteristics related to the programming environment that contribute to the
effectiveness of this tool

The first question in this section focused on the programming environment characteristics

perceived to contribute to the effectiveness of the tool. Table 27 identifies the

characteristics chosen in more than 50% of the responses in three of the four tool

categories. For libraries (100% response rate), no characteristic had a majority of

responses and therefore is not included in the table.

www.manaraa.com

113

Rank Microworlds IDEs
39.7% response rate 34% response rate

1 allows for easy transition allows for easy transition
to a more robust to a more robust
programming environment programming environment

2 supports abstraction includes
graphical
components

3 is flexible(allows use improves a first-time
at many levels of programmer’s experience
learning)

Table 26: Top three characteristics, in priority order, that are perceived to be inadequately
supported by the tool as determined by the survey responses evaluating
Microworlds and IDEs

Microworlds IDEs Visualization Tools
87% response rate 85% response rate 93% response rate

supports the simplifies simplifies
visualization of the mechanics of the mechanics of
the program programming (55.4%) programming (61.5%)
state (64.7%)

supports visualization provides multiple supports visualization
of OO views at of program
concepts (58.8%) once (55.4%) code (61.5%)

supports visualization supports visualization supports visualization
of state of OO of program
changes (54.4%) concepts (50.5%) state (53.8%)

provides multiple provides multiple
views at views at
once (54.4%) once (53.8%)

simplifies the
mechanics of
programming (52.9%)

Table 27: Characteristics related to programming environment perceived to contribute to
the effectiveness of the tool by more than 50% of those repsonding within each
tool category

Characteristics that relate to testing, debugging, and interaction that
contribute to the effectiveness of this tool

This question focusing on debugging, testing, and student interaction. Table 28 presents

www.manaraa.com

114

the majority choices of the responses in three of the four tool categories. For libraries

(100% response rate), no characteristic had a majority of responses and therefore is not

included in the table.

Microworlds IDEs Visualization Tools
78% response rate 85% response rate 93% response rate

prevents syntax supports supports step-by-step
errors (52.5%) debugging (74.3%) evaluation of

single programming
statements (84.6%)

supports an easy supports comments supports
way of including and debugging (84.6%)
event-driven documentation (70.3%)
programming (50.8%)

supports step-by-step gives immediate
evaluation of feedback about
single programming errors (53.8%)
statements (60.4%)

gives immediate supports comments
feedback about and
errors (57.4%) documentation (53.8%)

supports developing
and testing of
individual components (55.4%)

Table 28: Characteristics related to testing, debugging, and interaction perceived to
contribute to the effectiveness of the tool by the majority of the responses in
each tool category

The ranking of the top three characteristics, in order of priority, pertaining to the

programming environment, debugging, testing, and interaction that are perceived to

contribute to the effectiveness of the tool are presented in Table 29. These results are

listed by category. The four characteristics listed as top ranked in the Libraries category

had equal Borda numbers. In the Visualization category, the characteristics ranked second

had equal Borda numbers.

Characteristics related to programming environment, debugging, testing, and
interaction that are not adequately supported by the tool (if any such
characteristics exist)

Table 30 identifies the characteristics that are perceived to be inadequately supported by

www.manaraa.com

115

Rank Microworlds Libraries IDEs Visualization Tools
71% response 67% response 82% response 86% response
rate rate rate rate

1 simplifies the supports the supports supports step-
mechanics of visualization of visualization of by-step
programming program state OO concepts evaluation of

single programming
statements

provides a media
rich programming
environment

supports developing
and testing of
individual components

supports an easy
way of including
event-driven
programming

2 supports the supports simplifies the
visualization of debugging mechanics of
program state programming

supports
debugging

3 supports the simplifies the
visualization of mechanics of
state changes programming

Table 29: Top three ranked characteristics, in priority order, that relate to the
programming environment, testing, debugging, and interaction that are
perceived to contribute to the effectiveness of this tool as determined by
responses for each tool category

the tool. The top three characteristics (in priority order) ranked in the responses for three

of the four tool categories are included in the table. The Libraries category had only two

responses for this question and therefore those results are not included in the table. The

Visualization Tools category had only a 35% response rate. Although the Borda numbers

clearly indicate a top ranked characteristic in this category, the second rank was not so

clear having a five-way tie with only one response for each of the five characteristics. Only

the top ranked characteristic is included in Table 30 for Visualization Tools.

www.manaraa.com

116

Rank Microworlds IDEs Visualization Tools
41% response rate 49% response rate 36% response rate

1 provides prevents supports and easy
meaningful error syntax way of including
messages errors event-driven programming

2 supports step- supports visual
by-step evaluation representation of
of single general programming
programming concepts
statements

3 supports gives immediate
introduction of feedback about
data structures errors

Table 30: Characteristics, in priority order, that are perceived to be inadequately
supported by the tool as determined by responses in each tool category

7.2.4.4 Tool Characteristics Contributing to the Learning of and the
Teaching of Programming

This section of the survey queried teachers about characteristics pertaining to the learning

and the teaching of programming.

Table 31 identifies the characteristics that are perceived to contribute to the effectiveness

of the tool as they relate to the students’ learning to program by a majority of responses

in each of the four categories.

table31

Table 32 identifies the characteristics that are perceived to contribute to the effectiveness

of the tool as they relate to the teaching of programming in introductory programming

classes by a majority of responses in each of the four categories.

The rankings of the top three characteristics related to the learning and the teaching of

programming as determined by the responses in each of the four tool categories are

presented in Table 33.

www.manaraa.com

117

Microworlds Libraries IDEs Visualization Tools
82% response 100% response 77% response 71% response
rate rate rate rate

supports students’ supports students’ supports students’ supports students’
active engagement active engagement active engagement active engagement
in learning in learning in learning in learning
activities (93.8%) activities (100%) activities (60.9%) activities (60%)

engages students engages students helps understanding helps understanding
of different ability of different ability of program of program
levels (81.3%) levels (83.3%) execution (57.6%) execution (60%)

encourages learning supports the supports the
through understanding of understanding of
discovery (79.7%) abstract and abstract and

complex concepts complex concepts
(66.7%) (52.2%)

helps understanding allows students engages students
of program to work at of different ability
execution (65.5%) levels of their levels (51.1%)

choice (66.7%)

supports the helps understanding
understanding of of program
abstract and execution (66.7%)
complex concepts
(64.1%)

embodies ideas that
support core
programming
concepts (69%)

allows students
to work at
levels of their
choice (60.%)

Table 31: The characteristics that are perceived to contribute to student learning identified
by more than 50% of the responses in each tool category

www.manaraa.com

118

Microworlds Libraries IDEs Visualization Tools
79% response rate 100% response rate 81% response rate 79% response rate

is a good tool is a good tool can be used for is a good tool
for classroom for classroom the duration of for classroom
demonstrations demonstrations the course demonstrations
(91.9%) (83.3%) (87.5%) (90.9%)

can be used for is a good tool can be used for
the duration of for classroom the duration of
the course demonstrations the course
(83.3%) (77.1%) (90.9%)

Table 32: The characteristics related to the teaching of programming that are perceived
to contribute to effective teaching identified by more than 50% of the responses
in each tool category

Rank Microworlds Libraries IDEs Visualization Tools
73% response rate 83% response rate 76% response rate 79% response rate

1 supports students’ supports students’ can be used for is a good tool
active engagement active engagement the duration of for classroom
in learning in learning the course demonstrations
activities activities

2 engages students can be used for is a good tool can be used for
of different the duration of for classroom the duration of
ability levels the course demonstrations the course

3 encourages learning allows students to supports the helps understanding
through discovery work at levels of understanding of of program

their own choice abstract and execution
complex concepts

Table 33: Characteristics, in priority order, that are perceived to contribute to the
effectiveness of the tool as related to the learning of and teaching of programming
as determined by responses for each tool category

www.manaraa.com

119

7.2.4.5 Materials, Support, and Teacher Perception of Tool Use

Table 34 identifies those characteristics related to auxiliary materials and support that are

perceived to contribute to the effectiveness of the tool. The table identifies the

characteristics chosen by the majority of responses in each tool category.

Microworlds Libraries IDEs Visualization Tools
81% response rate 100% response rate 80% response rate 79% response rate

Materials about Technical support This tool can be This tool can be
this tool can be is provided by used independent used independent
found through on- the authors or the of the textbook of the textbook
line searches (82.5%) community (100%) chosen (90.5%) chosen (100%)

This tool can be Instructor resources Materials about Tutorials on using
used independent are provided by this tool can be the tool are provided
of the textbook the authors or the found through on- by authors or the
chosen (81.0%) community (100%) line searches (68.4%) community (63.6%)

Technical support This tool can be Tutorials on using
is provided by used independent the tool are provided
authors or the of the textbook by the authors or
community (68.3%) chosen (100%) the community (67.4%)

Instructor resources are Textbooks that Technical support
provided by the incorporate this is provided by the
authors or the tool are authors or the
community (68.3%) available (83.3%) community (62.1%)

Tutorials on using Materials about Textbooks that
the tool are provided this tool can be incorporate this
by authors or found through on- tool are
community (66.7%) line searches (66.7%) available (50.5%)

textbooks that
incorporate this
tool are
available (61.9%)

Table 34: The characteristics related to auxiliary materials and support that are perceived
to contribute to effective teaching identified by more than 50% of the responses
in each tool category

The overall perception of tool use in an introductory programming class is identified in

Table 35. The characteristics included in the table are those chosen by more than 50% of

the responses in each tool catagory.

The top three characteristics relating to auxiliary materials and support and overall

www.manaraa.com

120

Microworlds Libraries IDEs Visualization Tools
74% response 100% response rate 75% response rate 71% response rate
rate rate rate rate

Students enjoy The initial experience After using this tool Using this tool
using this with this tool students are ready to eases and promotes
tool (93.1%) psoitively affects extend their knowledge the learning of

subsequent programming by continuing on in programming (90%)
experiences (100%) a CS curriculum (79.8%)

Using this tool Using this tool using this tool Using this tool
eases and promotes eases and promotes eases and promotes eases and promotes
the teaching of the learning of the learning of the teaching of
programming (81.0%) programming (100%) programming (76.4%) programming (70%)

Using this tool Students enjoy Using this tool Students enjoy
eases and promotes using this eases and promotes using this
the learning of tool (100%) the teaching of tool (70%)
programming (79.3%) programming (68.5%)

The initial experience Using this tool Students enjoy
with this tool eases and promotes using this
positively affects the teaching of tool (67.4%)
subsequent programming programming (83.3%)
experiences (70.7%)

After using this tool The initial experience
students are ready to with this tool
extend their knowledge positively affects
by continuing on in subsequent programming
a CS curriculum (65.5%) experiences (60.7%)

Table 35: The characteristics related to the overall perception of the tool identified by
more than 50% of the responses in each tool category

perception of the tool are presented in Table 36.

When asked about characteristics that are desired but are not adequately supported by

the tool, the response rates for all four categories were very low. There were no responses

for Libraries, a 25.6% response rate for Microworlds, a 21% response rate for IDEs, and a

21.4% response rate for Visualizations. Table 37 lists, in priority order, the characteristics

that are perceived to be inadequately supported for Microworlds, IDEs, and Visualiztion

Tools based on these small response rates.

www.manaraa.com

121

Rank Microworlds Libraries IDEs Visualization Tools
69% response 83% response 73% response 71% response
rate rate rate rate

1 Students enjoy Students enjoy This tool can be This tool can be
using this tool using this tool used independent of used independent of

the textbook chosen the textbook chosen

2 This tool can be This tool can be Using this tool Using this tool
used independent of used independent of eases and promotes eases and promotes
the textbook chosen the textbook chosen the learning of the teaching of

programming programming

3 Instructor resources Using this tool Technical support Using this tool
are provided by contributes positively is provided by eases and promotes
authors or the to student retention authors or the learning of
community in course community programming

Table 36: Top three characteristics, in priority order, that are perceived to contribute
to the effectiveness of the tool as related to auxiliary materials, support, and
overall perceptions of the tool as determined by responses for each tool category

Rank Microworlds IDEs Visualization Tools
26% response rate 21% response rate 21% response rate

1 A mechanism for Textbooks that This tool can be
sharing materials is incorporate this used independent of
provided by authors tool are the textbook chosen
or community available

2 Instructor resources are Instructor resources are A mechanism for
provided by authors provided by authors sharing materials is
or community or community provided by authors

or community

3 Textbooks that Tutorials on using Tutorials on using
incorporate this the tool are provided the tool are provided
tool are by authors or by authors or
available community community

Table 37: Characteristics related to auxiliary materials and support, listed in priority
order, that are perceived to be inadequately supported by the tool as determined
by responses for three tool categories

www.manaraa.com

122

7.2.4.6 Negative Aspects of the Tool that may Hinder Teaching or Learning

This section of the survey queried teachers about the negative aspects of the tool

environment in that they either hinder teaching or hinder the students’ learning. The

survey included a “no significant negatives” option. The majority of responses chose this

option:

• Microworlds: 76.9% of those evaluating Microworlds answered this question; 45% of

those responding indicated that the tool had no significant negatives.

• Libraries: 100% of those evaluating Libraries answered this question; 100% of those

responding indicated that the tool had no significant negatives.

• IDEs: 67.2% of those evaluating IDEs answered this question; 61.3% of those

responding indicated that the tool had no significant negatives.

• Visualization Tools: 64% of those evaluating Visualization Tools answered this

question; 88.9% of those responding indicated that the tool had no significant

negatives.

When asked to identify the characteristics that hindered teaching or learning, no

characteristic was identified by a majority of responses in any tool category. No

characteristics were identified for Libraries and only one response identified a

characteristic for Visualization Tools. Table 38 identifies the three characteristics related

to the programming environment that are perceived to hinder teaching or learning. The

characteristics identified in the table are those with the largest percent of responses in

each category.

The question pertaining to the characteristics related to errors and support that are

perceived to hinder teaching or learning also had large percentages choosing “no

significant negatives.”

• Microworlds: 71.7% of those evaluating Microworlds answered this question; 51.8%

of those responses indicated that the tool had no significant negatives.

www.manaraa.com

123

Microworlds IDEs
77% response rate 67% response rate

The transition Students have
to real world technical
programming is difficulties (20%)
difficult (25%)

The tool is too The learning curve
restrictive to use is too steep (15%)
for the duration of
the course (23.3%)

Good OO style is The tool is too big
distorted by pragmatics for introductory
and limitations of classes (10%)
of this tool (15%)

Table 38: Characteristics related to the tool environment that are perceived to hinder
teaching or learning by those survey responses evaluating Microworlds and IDEs

• Libraries: 100% of those evaluating Libraries answered the question; 66.7% of those

responses indicated that the tool had no significant negatives.

• IDEs: 73.9% of those evaluating IDEs answered this question; 61.4% of those

responses indicated that the tool had no significant negatives.

• Visualization Tools: 78.5% of those evaluating Visualization tools answered this

question; 90.9% of those responses indicated that the tool had no significant

negatives.

The characteristics related to errors and support that were perceived to hinder teaching or

learning for each tool category are listed in Table 39.

7.2.5 Training and Experience

The questions in this section of the survey focused on the training that teachers had in

preparation for using the tool, the effectiveness of the tool in comparison to other tools

they may have used in their class, the experience the teacher has in teaching the

introductory programming course, and the experience the teacher has using the particular

tool that is being evaluated. Both the cross-categories summary and the aggregation

summary are reported in this section.

www.manaraa.com

124

Microworlds Libraries IDEs Visualization Tools
72% response rate 100% response rate 74% response rate 79% response rate

cryptic error cryptic error cryptic error cryptic error
messages (17.9%) messages (16.7%) messaages (13.6%) messages (9.1%)

no easy way to does not prevent does not prevent
debug (16.1%) syntax syntax

errors (16.7%) errors (12.5%)

technical no easy way technical
difficulties with to debug (16.7 %) difficulties with
installation (10.7%) installation (6.8%)

no technical technical
support (10.7%) difficulties with

installation (16.7%)

Table 39: The characteristics related to errors and support that are perceived to hinder
teaching or learning as determined by responses for each tool category

Amount of training

The survey collected information on teacher’s training in the use of this tool before the

tool was introduced in an introductory programming class. The results were similar for all

groups across categories (users, non-users, male respondents, female respondents, college

teachers, and secondary school teachers). More than 48% of the survey responses

indicated having no training, knew nothing about tool, and learned by experimentation.

Approximately 25% of the survey responses indicated observing a demonstration of the

tool at a conference but had no other training. Another 32% - 40% indicated learning the

tool through a tutorial provided with the tool or learning through a user’s guide or

training manual that accompanied the tool.

When looking at the individual tool categories, results were similar and are presented in

Table 40.

To investigate the need for training and the training effectiveness, and to query teachers

about the overall perception of tool use in an introductory programming class, respondents

were asked to answer a series of questions in which a 5-point Likert scale was used as the

research instrument. The questions provide a set of response items. For each item, the

www.manaraa.com

125

Training Microworlds Libraries IDEs Visualization
Tools

83% response 100% response 79% response 79% response
rate rate rate rate

no training 43.0% 16.7% 52.2% 63.6%

demonstration 29.2% 33.3% 24.5% 27.3%

workshop 31.0% 33.3% 22.4% 18.2%

manual or 55.4% 50.0% 28.8% 36.4%
user’s guide

Table 40: Type of training received in the use of the tool for each tool category

respondents were asked to choose from varying degrees of agreement on a scale ranging

from strongly agree (1) to strongly disagree (5). This set of choices includes a neutral

choice for those who are uncertain about their agreement with a particular statement.

The mean and standard deviation are generally used when reporting continuous data.

Since Likert-scale data are of an ordinal nature, the median and mode may have more

meaning in the Likert-scale analysis in this study than do the mean and standard

deviation. Both sets of descriptive statistics (ordinal and continuous) are included here.

Tables 41 and 42 report the frequency, mean, and mode for the Likert-scale questions used

in this study. Table 41 displays these descriptive statistics for the total survey responses

and Table 42 displays the same statistics for the responses of those presently using the

tool being evaluated in an introductory course (eliminating the non-users). The means

and standard deviations for the same groups (total survey responses and users) are

reported in Tables 43 and 44 respectively. As with other questions in this survey, the

Likert-scale items do not reflect measured student learning outcomes, but rather the

teachers’ beliefs and attitudes. The survey is intended to collect and record the teachers’

perceptions of tool use in introductory programming classes.

www.manaraa.com

126

N
1

2
3

4
5

S
tr

o
n
g
ly

N
ei

th
er

S
tr

o
n
g
ly

M
ed

ia
n

M
o
d
e

S
ta

te
m

en
t

A
g
re

e
A

g
re

e
A

g
re

e
n
o
r

D
is

a
g
re

e
D

is
a
g
re

e
D

is
a
g
re

e

T
h
e

a
m

o
u
n
t

o
f
tr

a
in

in
g

I
re

ce
iv

ed
in

th
e

u
se

1
8
0

5
9

6
5

3
1

2
1

4
2

2
o
f
th

is
to

o
l
w

a
s

en
o
u
g
h
.

I
w

il
l
co

n
ti

n
u
e

to
u
se

th
e

to
o
l
in

fu
tu

re
1
8
2

9
3

6
1

1
1

1
0

7
2

2
co

u
rs

es
.

I
w

il
l
re

co
m

m
en

d
th

is
to

o
l
to

o
th

er
co

m
p
u
te

r
1
8
2

9
2

6
7

1
3

4
6

1
1

sc
ie

n
ce

ed
u
ca

to
rs

U
si

n
g

th
is

to
o
l
in

m
y

in
tr

o
d
u
ct

o
ry

p
ro

g
ra

m
m

in
g

cl
a
ss

ea
se

s
a
n
d

p
ro

m
o
te

s
1
8
1

7
1

7
6

2
2

5
7

2
2

th
e

L
E

A
R

N
IN

G
o
f

p
ro

g
ra

m
m

in
g

co
n
ce

p
ts

U
si

n
g

th
is

to
o
l
in

m
y

in
tr

o
d
u
ct

o
ry

p
ro

g
ra

m
m

in
g

cl
a
ss

ea
se

s
a
n
d

p
ro

m
o
te

s
1
8
0

6
4

8
7

2
0

4
5

2
2

th
e

T
E

A
C

H
IN

G
o
f

p
ro

g
ra

m
m

in
g

co
n
ce

p
ts

U
si

n
g

th
is

to
o
l
in

m
y

in
tr

o
d
u
ct

o
ry

p
ro

g
ra

m
m

in
g

cl
a
ss

ea
se

s
a
n
d

p
ro

m
o
te

s
1
8
0

5
8

6
5

3
3

1
6

8
2

2
th

e
L
E

A
R

N
IN

G
o
f
O

O
co

n
ce

p
ts

U
si

n
g

th
is

to
o
l
in

m
y

in
tr

o
d
u
ct

o
ry

p
ro

g
ra

m
m

in
g

cl
a
ss

ea
se

s
a
n
d

p
ro

m
o
te

s
1
7
8

4
8

7
4

3
6

1
2

8
2

2
th

e
T

E
A

C
H

IN
G

o
f
O

O
co

n
ce

p
ts

T
ab

le
41

:
D

es
cr

ip
ti

ve
st

at
is

ti
cs

(f
re

qu
en

cy
,
m

ed
ia

n,
m

od
e)

fo
r

th
e

to
ta

l
su

rv
ey

re
sp

on
se

s

www.manaraa.com

127

N
1

2
3

4
5

S
tr

o
n
g
ly

N
ei

th
er

S
tr

o
n
g
ly

M
ed

ia
n

M
o
d
e

S
ta

te
m

en
t

A
g
re

e
A

g
re

e
A

g
re

e
n
o
r

D
is

a
g
re

e
D

is
a
g
re

e
D

is
a
g
re

e

T
h
e

a
m

o
u
n
t

o
f
tr

a
in

in
g

I
re

ce
iv

ed
in

th
e

u
se

1
4
9

5
3

5
2

2
6

1
5

3
2

1
o
f
th

is
to

o
l
w

a
s

en
o
u
g
h
.

I
w

il
l
co

n
ti

n
u
e

to
u
se

th
e

to
o
l
in

fu
tu

re
1
5
0

8
9

5
5

5
1

0
1

1
co

u
rs

es
.

I
w

il
l
re

co
m

m
en

d
th

is
to

o
l
to

o
th

er
co

m
p
u
te

r
1
5
0

8
5

5
8

6
1

0
1

1
sc

ie
n
ce

ed
u
ca

to
rs

U
si

n
g

th
is

to
o
l
in

m
y

in
tr

o
d
u
ct

o
ry

p
ro

g
ra

m
m

in
g

cl
a
ss

ea
se

s
a
n
d

p
ro

m
o
te

s
1
5
0

6
7

6
4

1
6

2
1

2
1

th
e

L
E

A
R

N
IN

G
o
f

p
ro

g
ra

m
m

in
g

co
n
ce

p
ts

U
si

n
g

th
is

to
o
l
in

m
y

in
tr

o
d
u
ct

o
ry

p
ro

g
ra

m
m

in
g

cl
a
ss

ea
se

s
a
n
d

p
ro

m
o
te

s
1
4
9

6
1

7
0

1
6

2
0

2
2

th
e

T
E

A
C

H
IN

G
o
f

p
ro

g
ra

m
m

in
g

co
n
ce

p
ts

U
si

n
g

th
is

to
o
l
in

m
y

in
tr

o
d
u
ct

o
ry

p
ro

g
ra

m
m

in
g

cl
a
ss

ea
se

s
a
n
d

p
ro

m
o
te

s
1
4
9

5
6

5
3

2
6

1
2

2
2

1
th

e
L
E

A
R

N
IN

G
o
f
O

O
co

n
ce

p
ts

U
si

n
g

th
is

to
o
l
in

m
y

in
tr

o
d
u
ct

o
ry

p
ro

g
ra

m
m

in
g

cl
a
ss

ea
se

s
a
n
d

p
ro

m
o
te

s
1
4
7

4
7

6
2

2
6

1
0

2
2

2
th

e
T

E
A

C
H

IN
G

o
f
O

O
co

n
ce

p
ts

T
ab

le
42

:
D

es
cr

ip
ti

ve
st

at
is

ti
cs

(f
re

qu
en

cy
,
m

ed
ia

n,
m

od
e)

fo
r

th
e

re
sp

on
se

s
of

th
os

e
pr

es
en

tl
y

us
in

g
th

e
to

ol

www.manaraa.com

128

S
ta

te
m

en
t

N
M

in
im

u
m

M
a
x
im

u
m

M
ea

n
S
ta

n
d
a
rd

D
ev

ia
ti

o
n

T
h
e

a
m

o
u
n
t

o
f
tr

a
in

in
g

1
8
0

1
.0

0
5
.0

0
2
.1

4
4
4

1
.0

7
3
4
1

I
re

ce
iv

ed
in

th
e

u
se

o
f
th

is
to

o
l
w

a
s

en
o
u
g
h
.

I
w

il
l
co

n
ti

n
u
e

to
u
se

1
8
2

1
.0

0
5
.0

0
1
.7

7
4
7

1
.0

4
5
2
8

th
e

to
o
l
in

fu
tu

re
co

u
rs

es
.

I
w

il
l
re

co
m

m
en

d
th

is
1
8
2

1
.0

0
5
.0

0
1
.7

0
8
8

0
.9

3
8
9
2

to
o
l
to

o
th

er
co

m
p
u
te

r
sc

ie
n
ce

ed
u
ca

to
rs

U
si

n
g

th
is

to
o
l
in

m
y

in
tr

o
d
u
ct

o
ry

1
8
1

1
.0

0
5
.0

0
1
.9

0
0
6

0
.9

8
3
7
9

p
ro

g
ra

m
m

in
g

cl
a
ss

ea
se

s
a
n
d

p
ro

m
o
te

s
th

e
L
E

A
R

N
IN

G
o
f

p
ro

g
ra

m
m

in
g

co
n
ce

p
ts

U
si

n
g

th
is

to
o
l
in

m
y

in
tr

o
d
u
ct

o
ry

1
8
0

1
.0

0
5
.0

0
1
.8

8
3
3

.8
9
2
3
9

p
ro

g
ra

m
m

in
g

cl
a
ss

ea
se

s
a
n
d

p
ro

m
o
te

s
th

e
T

E
A

C
H

IN
G

o
f

p
ro

g
ra

m
m

in
g

co
n
ce

p
ts

U
si

n
g

th
is

to
o
l
in

m
y

in
tr

o
d
u
ct

o
ry

1
8
0

1
.0

0
5
.0

0
2
.1

7
2
2

1
.1

1
2
8
0

p
ro

g
ra

m
m

in
g

cl
a
ss

ea
se

s
a
n
d

p
ro

m
o
te

s
th

e
L
E

A
R

N
IN

G
o
f

O
O

co
n
ce

p
ts

U
si

n
g

th
is

to
o
l
in

m
y

in
tr

o
d
u
ct

o
ry

1
7
8

1
.0

0
5
.0

0
2
.2

0
2
2

1
.2

3
2
2
2

p
ro

g
ra

m
m

in
g

cl
a
ss

ea
se

s
a
n
d

p
ro

m
o
te

s
th

e
T

E
A

C
H

IN
G

o
f

O
O

co
n
ce

p
ts

T
ab

le
43

:
D

es
cr

ip
ti

ve
st

at
is

ti
cs

(m
ea

n
an

d
st

an
da

rd
de

vi
at

io
n)

fo
r

th
e

to
ta

l
su

rv
ey

re
sp

on
se

s

www.manaraa.com

129

S
ta

te
m

en
t

N
M

in
im

u
m

M
a
x
im

u
m

M
ea

n
S
ta

n
d
a
rd

D
ev

ia
ti

o
n

T
h
e

a
m

o
u
n
t

o
f
tr

a
in

in
g

1
4
9

1
.0

0
5
.0

0
2
.0

8
0
5

1
.0

5
5
9
8

I
re

ce
iv

ed
in

th
e

u
se

o
f
th

is
to

o
l
w

a
s

en
o
u
g
h
.

I
w

il
l
co

n
ti

n
u
e

to
u
se

1
5
0

1
.0

0
4
.0

0
1
.4

5
3
3

0
.5

9
7
3
8

th
e

to
o
l
in

fu
tu

re
co

u
rs

es
.

I
w

il
l
re

co
m

m
en

d
th

is
1
5
0

1
.0

0
4
.0

0
1
.4

8
6
7

0
.6

1
0
1
7

to
o
l
to

o
th

er
co

m
p
u
te

r
sc

ie
n
ce

ed
u
ca

to
rs

U
si

n
g

th
is

to
o
l
in

m
y

in
tr

o
d
u
ct

o
ry

1
5
0

1
.0

0
5
.0

0
1
.7

0
6
7

0
.7

6
4
5
4

p
ro

g
ra

m
m

in
g

cl
a
ss

ea
se

s
a
n
d

p
ro

m
o
te

s
th

e
L
E

A
R

N
IN

G
o
f

p
ro

g
ra

m
m

in
g

co
n
ce

p
ts

U
si

n
g

th
is

to
o
l
in

m
y

in
tr

o
d
u
ct

o
ry

1
4
9

1
.0

0
4
.0

0
1
.7

2
4
8

0
.7

0
5
7
6

p
ro

g
ra

m
m

in
g

cl
a
ss

ea
se

s
a
n
d

p
ro

m
o
te

s
th

e
T

E
A

C
H

IN
G

o
f

p
ro

g
ra

m
m

in
g

co
n
ce

p
ts

U
si

n
g

th
is

to
o
l
in

m
y

in
tr

o
d
u
ct

o
ry

1
4
9

1
.0

0
5
.0

0
2
.0

0
0
0

1
.0

0
0
0
0

p
ro

g
ra

m
m

in
g

cl
a
ss

ea
se

s
a
n
d

p
ro

m
o
te

s
th

e
L
E

A
R

N
IN

G
o
f

O
O

co
n
ce

p
ts

U
si

n
g

th
is

to
o
l
in

m
y

in
tr

o
d
u
ct

o
ry

1
4
7

1
.0

0
5
.0

0
2
.0

3
4
0

0
.9

4
6
6
2

p
ro

g
ra

m
m

in
g

cl
a
ss

ea
se

s
a
n
d

p
ro

m
o
te

s
th

e
T

E
A

C
H

IN
G

o
f

O
O

co
n
ce

p
ts

T
ab

le
44

:
D

es
cr

ip
ti

ve
st

at
is

ti
cs

(m
ea

n
an

d
st

an
da

rd
de

vi
at

io
n)

fo
r

th
e

re
sp

on
se

s
of

th
os

e
pr

es
en

tl
y

us
in

g
th

e
to

ol

www.manaraa.com

130

7.2.6 Course Description and Teacher Experience

This study investigates the use of pedagogical tools in an introductory programming

course. Programming is introduced in varying degrees of intensity. Middle school students

may be introduced to programming concepts using Scratch or Game Maker while college

students may have a first-time programming experience with Alice or Java. The tools

chosen are not grade-level tools. Scratch is used both in middle schools and in colleges;

Java is used at the high school level and post-secondary levels. Educators charged with

teaching introductory programming courses accept the challenge with diverse teaching

backgrounds and varied knowledge about and experience with pedagogical tools.

7.2.6.1 Course Description

Introductory programming is taught at many educational levels in courses varying in

length, rigor, and requirements. In secondary schools, the titles of the courses taught by

the survey respondents include such names as “Computing in the Modern World”,

“Introduction to Java,” and “Advanced Placement Computer Science.” These courses

vary in length from 30 hours to 270 hours. The average course length of 129.1 hours; The

median length is 130 hours; The mode length is 180 hours. 96% of the respondents have a

course length less than or equal to 180 hours and approximately 69% of the respondents’

courses have a length between 100 and 180 hours.

At the college level, most titles reflect “Introduction to Object-Oriented Programming” or

“Computer Science 1.” The courses at the college level vary in length from 30 hours to

168 hours with an average course length of 62 hours, a median course length of 45 hours

and a mode length of 45 hours. 90% of the respondents have a course length less than or

equal to 80 hours and approximately 66% of the respondents have a course length

betweeen 40 and 80 hours.

Introductory programming courses have different statuses in different educational

environments. The survey asked teachers to identify their course by choosing from the

following:

www.manaraa.com

131

• Elective (55.9%): Elective courses are optional courses that a student chooses to

take. These courses are not required to graduate or to fill any graduation

requirement.

• General education requirement (8.4%): General education requirements describe

core courses that all students must take in order to graduate. In some schools a

programming course may satisfy a quantitaive requirement.

• Majors requirement (23.5%): At the college level, students generally declare a

major. The introductory programming course may satisfy a requirement for the

computer science (or other) major.

• Honors course (4.5%): At the secondary school level, some courses are designated as

honors. This designation indicates that the course is of a higher level of difficulty.

The grade in the honors course is usually weighted differently and can strengthen

the student’s chances for college admission.

• AP course (33.5%): At the secondary level, AP courses prepare the student to take

the College Board’s Advanced Placement Examination. Passing this exam may earn

the student college credit. Somewhat equivalent to the AP course difficulty is the

International Baccalaureate (IB) course. An AP or IB course usually carries at least

the weight of an honors course.

This question was answered on 80% of the total survey responses. The percentages in

parentheses above indicate the percentage of responses whose courses best fit that

description. The choices are not mutually exclusive. For example, an AP Computer

Science course may also be an elective course.

7.2.6.2 Teacher Demographics and Experience

The survey respondents in this study are not intended to be representative of the typical

teachers of introductory programming classes. As explained in Section 3.6, the

www.manaraa.com

132

respondents are likely to be at a higher level of professional involvement in computer

science education than most teachers of introductory programming courses. 81% of those

completing the survey chose to answer the demographic questions. Of these responses,

55.2% were male and 44.8% were female. For the secondary school responses, 48.8% were

male and 51.2% were female. At the college level, 66.7% were male and 33.3% were female.

The survey responses identified 71.3% teaching at the secondary school level (1.7% middle

school, 69.6% high school) and 32.4% teaching at the college level (29.3% at four-year

institutions and 3.1% at two-year institutions). A few respondents were teaching at both

college and secondary levels.

In response to teaching experience and experience using the pedagogical tool being

evaluated, 82.6% of the responses of those teaching in the secondary schools have taught

the introductory programming course five or more times with 43.1% of these teachers

having used the evaluated tool five or more times. 15.9% of the responses indicate having

used the tool only once.

At the college level, 89.1% of the responses indicate having taught the introductory

programming course five or more times with 46.5% of them using the evaluated tool five or

more times. Only 10.7% of the college responses indicate having used the tool only once.

7.3 Interviews with Teachers

The researcher recognizes the importance of multiple data sources. Data for this study was

collected from three main sources: teacher survey, teacher interviews, and interviews with

the tool developers. Each data source provides additional information about the tools as

well as different perspectives on tool use in introductory programming courses and allows

the researcher to explain more fully the common characteristics of an effective pedagogical

tool and its use from more than one viewpoint, making use of the different data sources

[111, 46]. This section reports on the information collected from the teacher interviews.

Standardized open-ended interviews were conducted with eleven teachers of introductory

www.manaraa.com

133

programming. Of these eleven teachers, four were from the university, six were high school

teachers (grades 9 - 12) and one was a middle school computing teacher. Appendix C

contains the teacher interview questions. Summaries of the responses to these questions

are reported here.

How does a teacher find appropriate tools to use?

All interview respondents identified the computer science community as the primary way

to find appropriate tools to use in an introductory programming course. Individual

teachers identified the community as:

• Special Interest Group on Computer Science Education mailing list (SIGCSE

Announce)

• Advanced Placement Computer Science Electronic Discussion Group (AP CS EDG)

Both SIGCSE Announce and AP CS EDG are electronic discussion groups that

allow for communication via email with other members of the community.

Individual teachers also identified sources for information on pedagogical tools as:

• Searches on the Internet

• Conversations with other educators

• Professional development workshops or symposia

What influences a teacher to use one particular tool over another?

There were two major themes in the answers to this question:

• Teacher recommendation: based on the perceived credibility of the people on the

mailing lists recommending the tool.

• Fits the need of the course. As one teacher describes, “...the tool replaces something

for which it does better or it adds to what I already have in place in terms of

instruction.”

www.manaraa.com

134

What are your reactions to: Teachers do not use tools in their class because
a) they do not have time to spend learning the tool or b) they cannot afford
the time to use the tool in their class because it would take time away from
the curriculum they must cover.

Most interviewees respond to these statements “with sympathy and skepticism.” They

agree that there is truth to the statements but that time put into learning the tool will be

worth it in the long run. Specific reactions from individual teachers illustrating this are:

• “If you find something that is going to replace what you are currently doing and

make it better, then you are going to find the time to learn it. I think some tools

just help you teach better, more effectively, and quicker when you use them and

that’s good.”

• “If it’s a good tool, it will end up making you time. At the end of the course, or the

end of the year, or the end of the student’s degree, you want them to have a certain

set of skills or learning outcomes and if you are going to get them to have more of

them or have them deeper, that’s good. A good tool will help you with better

learning outcomes or different learning outcomes or deeper learning outcomes. A

good tool will help you give them all of those. That pretty much translates into

saving you time, giving you more time to do more different things so they get those

better learning outcomes.”

• “ it doesn’t matter that you covered a lot of stuff if the students don’t get it and so I

argue back and when I am trying to help other professors and teachers, I try to show

that; give them something that gets them deeper or further than they would have

gone and then you can grow it from there with a constructivist kind of approach.”

What are your reactions to: Many teachers using tools learn how to use them
without any formal training.

Most of the interviewees agree that:

• Teachers, especially in the field of computer science, learn tools by “fiddling

around” with them.

www.manaraa.com

135

• Teacher experience helps in the learning process.

• Fiddling may allow the teacher to learn how the tool works but won’t offer much in

using the tool effectively within a pedagogical framework.

What do you believe is the best medium to train in the use of a tool?

The interviewees agree that different people learn in different ways. Most respondents

mentioned two training mediums:

• Workshops (of any length): Face-to-face workshops allow for active engagement of

the participants. The tool and its pedagogical strengths can be observed.

• Videos: Short video clips on the tool use and pedagogical strengths.

When queried about Web training, most of those interviewed would participate in a Web

training event if it did not require a great deal of time.

Do you believe that you use the tool to its full potential?

All interview respondents agree that the tools used in their classes are not used to their

full potential. Most interviewees use 50% - 75% of the tool’s capabilities, choosing aspects

of the tool based on their curriculum needs.

What do the authors of the tools need to know or to ask the teachers?

• Ask what works and what doesn’t work.

• Ask what could be done better

• Find people to develop lessons and activities: out of the box activities that come

with video or podcast, not just a text document.

• Provide pedagogical examples of how your tool is strong and provide the media that

backs it up.

www.manaraa.com

136

• The tool has to be plug and play with no hang-ups on installation.

• Provide tutorials for introductory students and make the tutorials easy to find.

• Ask about the type of students that will be using the tool and provide for student

needs at various levels.

• Provide a mechanism to share resources.

How to you disseminate information about a tool that you believe in?

The interview respondents were in total agreement that the AP CS EDG was the best

way to disseminate information about pedagogical tools to the computer science

community. When reminded that not all computing teachers are members of the AP CS

community, several other suggestions were offered:

• Computer Science & Information Technology (CS & IT) Symposium: provides

professional development opportunities for high school and middle school computer

science and computer applications teachers who need practical, relevant information

to help them prepare their students for the future [56]. Approximately 200 teachers

attend.

• SIGCSE Symposium: The SIGCSE Technical Symposium addresses problems

common among educators working to develop, implement and/or evaluate

computing programs, curricula, and courses. The symposium provides a forum for

sharing new ideas for syllabi, laboratories, and other elements of teaching and

pedagogy, at all levels of instruction [2]. Approximately 1150 computer science

educators attend with about 50 of those registering as high school teachers.

• Consortium for Computing Sciences in Colleges (CCSC): Conferences held in ten

regions of the country primarily for two- and four-year college computer science

educators. Special sessions for K-12 teachers are encouraged and K-12 teachers are

invited to attend [72].

www.manaraa.com

137

• Computer Science Teachers Association (CSTA) Web Repository: A searchable

database of instructional materials, lesson plans, and other resources that have

never before been collected in one place for use by all CS teachers [56].

• National Education Computing Conference (NECC): Boasts to be the world’s most

comprehensive education technology event. The NECC Program features a vast

array of professional learning and collaborative networking opportunities [73].

• Individual state computing conferences

• Computing contests

• Blogs

Do you use any tool for demonstration purposes only?

Although none of the interviewees use pedagogical tools only for demonstration purposes

in introductory programming courses, visualization tools are used by a few to display data

structures and other concepts in more advanced courses.

Would your teaching change if these pedagogical tools were taken away from
you?

All respondents agreed that the way they teach would change significantly if the tools

were removed from their teaching repertoire. All would adapt by recreating most of their

lessons and replacing some aspects of tool use with “manipulatives” and role playing.

Others agreed that their lessons would be somewhat dull.

What tools do we need that are not out there?

Some suggestions the interviewees had were:

• A better platform for Web IDE

• Better visualization tools (working at different levels and in different languages)

• A system of small interactive units to teach introductory concepts

www.manaraa.com

138

• An environment that includes Karel

• A cognitive tutor environment that remembers student interactions and monitors

student progress

Are there any tools that you consciously choose not to use”?

A majority of the respondents have consciously chosen not to use certain tools in their

introductory courses. Many have switched from one tool to another. The reasons vary.

• “I switched to Alice because it’s newer and different.”

• “I did use Alice but the time spent on it didn’t give a good return.”

• “I switched to Alice because I wanted to hand kids something that in 15 minutes

they could see an ice skater dancing on the screen.”

• “I wanted to use Karel but I couldn’t get it to work easily.”

• “I won’t use Game Maker again until I find a better way to teach it. Maybe with

the scripting.”

• “I dropped Robo Code. It’s too hard to ramp up on.”

• “I don’t use Scratch because I don’t know what it can be used for.”

• “I don’t use Eclipse because it’s too complicated.”

• “ I am switching from Alice to Scratch. I’ll be interested in the next Alice version

but I think Scratch will be better right now for what I want.”

• “I don’t use algorithm visualization tools. It seems that they are overwhelming. It

would be nice to have something that would be easy for students without the

overhead.”

Some respondents chose not to use the tool because it was not appropriate for the level or

content of their course. Table 3, Section 7.2, contains a listing of tools that the survey

www.manaraa.com

139

respondents either use or consciously choose not to use in their introductory programming

course. The not-using column was the focus of this question.

If you could choose only one tool to keep using, what would it be?

There was no consensus among the respondents. Of the eleven teachers responding, there

were eight different answers. They included: BlueJ, JCreator, DrScheme, DrJava, Flash,

Greenfoot, Alice, and Eclipse. However, most respondents indicated that the reason for

keeping this one tool was that the tool allowed for the coverage of the topics most critical

in the course and the tool can be used for the duration of the course.

7.4 Interviews with Tool Developers

As mentioned throughout this dissertation, the data for this study was collected from

three main sources: teacher surveys, interviews with teachers, and interviews with the

those that design and develop the tools. Interviews with the developers of the tool provide

a different perspective than do the interviews with the teachers (users of the tool).

The third and final summary of data collection in this study involves interviews with the

tool developers. Semi-structured interviews were conducted with six individuals, each of

whom is a tool developer or a member of the tool design and development team for one of

the following pedagogical tools: Alice, BlueJ/Greenfoot, Java Task Force Library, Jeroo,

Karel J. Robot, and ObjectDraw. Appendix C contains the interview questions.

Summaries of the responses to these questions are reported here.

• When asked, “What influenced you to create your tool?”

the developers identified three major reasons:

– to provide a way of teaching object-oriented programming well from the

beginning

– to modernize the course and make it more appropriate and enjoyable for

today’s students

www.manaraa.com

140

– to include, within the teaching environment, a form of visualization or

graphics so the student could actually author something and then watch how

the program executed.

Several interviewees credited Rich Pattis, author of the original Karel the Robot: A

Gentle Introduction to the Art of Programming, as the impetus for creating

pedagogical tools or environments for the teaching of programming concepts.

• There was consensus that the tool created was created for its pedagogical

importance and not for the tool’s technological value. Pedagogically, developers

agreed that visual representation of the student’s coded work and communicating

the deeper, more complicated programming concepts relatively easily and quickly

were goals in the tool development. Specific goals of some of the tool developers

illustrating this include:

– “We have the ability to go stepwise and go at various speeds so students can

see the effect and understand the effect of their code.”

– “The student could actually author something and then could watch how the

program executed...would fit much stronger into helping the student to learn.”

– “...we remove the tedium but keep the essential ideas.”

– “the student can relatively easily and relatively quickly get to deep ideas about

polymorphism...”

– “from the beginning they (the students) would be thinking in the right way,

they’d be developing solutions in the right way, so they didn’t have to

completely relearn everything when they learned how to do it the real way.”

Technologically, Alice was created at the time when 3-D graphics were first available

on the personal computer and so Alice did make a technological impact on the

pedagogical tool development.

• When asked about particular strengths and weaknesses of the tool, all tool

developers noted that the tool supports sound pedagogical goals providing a

www.manaraa.com

141

framework for talking about deep programming concepts without the overhead of

dealing with language details. The different weaknesses mentioned by the tool

developers included:

– Some tool developers aren’t thrilled with the code behind the scenes but if it’s

not open source, no one sees the code.

– There are difficulties dealing with input and output.

– The two-dimensional environment is not as attractive as 3D.

– The tool is a bit old and needs revision.

– The transition to “real world” may be difficult.

• The pedagogical tools investigated by this study are developed for teachers to use in

introductory programming courses. When asked if the developers seek feedback and

reactions about their tools, all tool developers are receptive to receiving feedback

from the teachers using their tools and respond to questions and concerns that

teachers pose through email. Not all tool developers actively seek feedback. Some

tool developers run workshops at which time they request reactions and feedback.

All of the tool developers interviewed provide a mechanism on the tool web site for

receiving feedback.

• A major source for learning about pedagogical tools is the computer science

education communities. Two active communities links are SIGCSE Announce and

the AP CS EDG. The SIGCSE mailing list serves mostly college computer science

educators while the AP CS list reaches primarily the high school computer science

teachers. Though not all interviewees are active participants on these lists, most are

“listeners” or have others on the tool development team who are active. All of the

interviewees are members of the SIGCSE community and all but one of the

interviewees belong to the AP CS list.

• Proliferating information about the tool is important if the tool is to be accepted

and used in the community of computer science educators. Most of the developers

www.manaraa.com

142

advertise their tool by word of mouth. Some developers offer workshops at the

SIGCSE Symposium. But, as one developer states: “High school teachers are not

well-organized above the local level and so they are harder to reach.” The CSTA CS

& IT Symposium, primarily for K-12 computing educators, reaches only about 200

teachers. The SIGCSE symposium reaches approximately 1150 computer science

educators of which about 50 are registered as high school teachers. Other attempts

to disseminate information about the tool have included: hosting competitions that

use the tool, distributing trinkets or wearing T-shirt that advertise the tool. Most

admit that advertising is easy but getting people to find the advertisement is

challenging. The primary means is electronic communication through the mailing

lists or tool web-sites.

• Most of the tool developers interviewed offer some form of teacher resources

available free on-line.

The strengths of this research are based on the gathering of data from three sources: a

survey to teachers, interviews with teachers, and interviews with tool developers. This

chapter has presented the results of each of the three data collections separately. Chapter

8 will classify, categorize, and summarize this data providing an analysis of the results in

answering the research questions that were posed in Chapter 3.

www.manaraa.com

143

Chapter 8

Analysis of Results

8.1 Introduction

The data for this study was collected from three main sources: teacher surveys, interviews

with teachers, and interviews with the tool developers. The interviews give greater depth

into the choice and use of pedagogical tools in the introductory programming class and

the survey provides greater breadth of the tool use. Interviews with the developers of the

tools provide a different perspective than do the interviews with the teachers (users of the

tool). The three data sources provide a methodological triangulation for the results of this

study. “Adding one layer of data to another builds a confirmatory edifice [58].” Teddie

and Tashakkori define triangulation as the combinations and comparisons of multiple data

sources, data collection, and analysis procedures, research methods, and inferences that

occur at the end of the study [212]. This study triangulates survey results with two

distinct sets of interview data to provide informative summaries about the characteristics

that are perceived to contribute to the effectiveness of pedagogical tools and to the

widespread adoption of these tools.

The analysis consists of classifying, categorizing and summarizing the results. The

cross-category summary in Chapter 7 presented results of male and female respondents,

college and secondary school teachers, those using the tool and those choosing not to use

the tool. The aggregation summary compared responses of those evaluating tools in

specific tool categories: Microworlds, Libraries, IDEs, and Visualization Tools. This

analysis is designed to investigate the commonalities that exist in both the cross-category

and aggregation survey responses and are supported by interview data.

8.2 Analysis Presentation

Several steps were involved in the preparation of the analysis summary.

www.manaraa.com

144

1. The survey data were reported in Chapter 7 question by question for both the

cross-categories and the aggregation of tools.

2. The interview data were reviewed for common phrases, patterns, and perceptions.

3. A list of common characteristics and patterns was formed from the survey data and

interview results. From that list, several major themes developed. Each

characteristic in the list was classified under one of the following major themes:

• Reasons for choosing the tool: There are common reasons teachers choose to

initially use the tool.

• Manageable Environment: The tool was not difficult to use or install,

simplified the mechanics of programming, and was neither too restrictive or

too complicated for an introductory programming course.

• Active Learning: The tool supports an interactive environment where students

are actively engaged in the learning process.

• Good First Experience: Students enjoy using the tool and programming is

introduced in an enjoyable way through the use of the tool.

• Visual Environment: The tool supports some form of graphical components or

visualization techniques.

• Flexible Environment: The tool engages many levels of learning and can be

used throughout the course.

• Subsequent Courses: The tool is a solid introduction to subsequent computer

science courses and allows students to transition to these courses seamlessly.

• Programming Activities: The tool provides support for programming activities.

• Tool Resources: The developer, tool, or community, provides resources for

using the tool in an introductory programming course.

• Teaching: The tool eases and promotes the teaching of programming.

• Learning: The tool eases and promotes the learning of programming.

www.manaraa.com

145

4. A summary table was created organizing tool characteristics within these themes.

5. The survey summary data reported in Chapter 7 were reviewed for characteristics

that the majority of respondents perceived to contribute significantly to the

effectiveness of the tool. Only the majority percentages are recorded in the summary

table. If the cell does not include a percentage, the percentage was less than 50%.

• The cells identifying respondents that perceived the corresponding

characteristic to contribute to the effectiveness of the tool were indicated in

the summary table by color-coding the cells pink.

• The cells identifying respondents that perceived the corresponding

characteristic to be inadequately supported by the tool were indicated in the

summary table by color-coding the cells green.

• The cells identifying respondents that perceived the corresponding

characteristic to contribute significantly to the effectiveness of the tool but are

still inadequately supported by the tool were indicated in the summary table

by color-coding the cells gray.

The complete color-coded summary table for this analysis appears in Appendix E.

8.3 Addressing the Research Questions

In summarizing the responses as they reflect the major themes listed in Section 8.2, the

following research questions are addressed:

1. What influences the use of pedagogical tools in the introductory programming

class? Specifically, what is the primary reason a teacher chooses to use a particular

tool in an introductory programming class?

2. What are the perceived characteristics of an effective pedagogical tool used in an

introductory programming course (effective is defined as: eases and promotes the

teaching and/or learning of programming)?

www.manaraa.com

146

3. What are the perceived characteristics of a pedagogical tool that hinder (or get in

the way of) teaching and/or learning in an introductory programming course?

In addressing these questions, the survey data is summarized both within questions and

across questions integrating interview results were appropriate. The results of the study

may be referenced as specific tool categories (microworlds, libraries, IDEs, and

visualization tools), as total respondents, or according to gender or teaching level

(secondary school verses college). Throughout this analysis, the researcher takes the

liberty of offering opinions on the relevance of the findings.

8.3.1 What Influences the Use of Pedagogical Tools in the
Introductory Programming Class?

Using a pedagogical tool in an introductory programming class involves choosing the right

tool to use for the appropriate pedagogical goals. The computer science teacher makes a

conscious choice to use a specific pedagogical tool in an introductory programming course.

The choice is influenced by the perceived effects the tool has on learning and on teaching.

8.3.1.1 Tool Choice

This study confirms several reasons for tool choice. Many of these reasons are based on

the teachers’ perceptions of the students’ learning experiences in the programming course.

The characteristics contributing to the initial adoption of a tool in an introductory

programming course include:

• introducing programming in an enjoyable way

• improving first-time programmers experience

• positively affecting subsequent programming experiences

• easy to learn

Although these reasons do not indicate that specific pedagogical goals are being

addressed, the researcher acknowledges that they are characteristics of the tool that

encourage retention in the course and in the discipline.

www.manaraa.com

147

The survey data indicate, in all cases, that the primary reason a teacher chooses to use a

tool in an introductory programming class is to introduce programming in an enjoyable

way. It is certainly not surprising that students should “enjoy” the experience of learning

to program. And, certainly the goals of the tool developers are intended to support this

[135, 202]. The interviews with tool developers confirm that the design of many of the

pedagogical tools in this study were influenced by a need to modernize the introductory

programming course to make it more appropriate and enjoyable for today’s student. The

developers also agreed that the tool was designed to provide a framework in which deep

programming concepts can be taught without the overhead of language details.

Regardless of gender or teaching level, the majority of the respondents in this study

perceive that the pedagogical tools used in their introductory class improves the first-time

programmers experience allowing the student to have an initial encounter that positively

affects subsequent programming experiences. This was confirmed by respondents using

microworlds, libraries and visualization tools in their introductory programming classes.

Introducing programming in an enjoyable way was perceived to be a characteristic

contributing significantly to the effectiveness of the tool being evaluated by the

respondents, regardless of gender or teaching level.

8.3.1.2 Recommendations from Other Computer Science Educators

Knowing that one wishes to introduce programming in an enjoyable way does not identify

exactly why a teacher chooses to use one particular pedagogical tool over another. While

tool choice is influenced by the reasons stated above, this study also confirms that the

primary influence for initially choosing to use a pedagogical tool in an introductory

programming course is the recommendation of other computer science educators. This

recommendation may be made without specifically stating the pedagogical goals that are

addressed by using the tool. The respondents directly involved in this study and those

computer science educators involved in the various on-line communities that are addressed

in this study are experienced educators. The researcher is confident that when one of

these computer science educators is influenced by a recommendation, or offers a

www.manaraa.com

148

recommendation, the recommendation is based on sound pedagogical considerations.

The results of the survey indicate that the primary influence in deciding to use a

particular pedagogical tool is the recommendation of other computer science educators.

Those evaluating microworlds, libraries, and IDEs confirmed this, as did the responses of

the secondary school teachers participating in the study. The teacher interviews confirmed

that the perceived credibility of those recommending the tool was important and that the

primary sources of the “credible” recommendations were computer science education

on-line communities. The communities were identified as the Special Interest Group on

Computer Science Education listserve (SIGCSE Announce), the SIGCSE Annual

Symposium, and the Advanced Placement Computer Science Electronic Discussion Group

(AP CS EDG).

Most of the tool developers that were interviewed are linked into both mailing lists,

SIGCSE Announce and the AP CS EDG. Although a many of the tool developers may

not necessarily be active participants in the electronic discussions, either the tool

developer or a member of the tool development team is aware of any communication that

develops on the lists about their pedagogical tool. SIGCSE Announce reaches more than

2600 members, mostly college educators. The AP CS EDG reaches approximately 1950

members, both high school and college computer science educators. The high school

members of the AP CS EDG primarily teach AP Computer Science, a course that is

equivalent to a first semester college level computer science course. The students enrolled

in AP Computer Science are expected to take the AP Computer Science Examination.

Passing this exam will earn the student credit and/or placement in many colleges.

All introductory programming teachers do not teach AP Computer Science and may not

be members of the AP CS EDG. It is this non-AP K-12 population of computer science

educators that may not be linked into hearing about the newly developed pedagogical

tools that can enhance and improve teaching the teaching of and learning of

programming. There are also college educators that are not members of SIGCSE

www.manaraa.com

149

Announce and do not attend the annual SIGCSE Symposium.

The researcher addressed these issues in the interview portions of this study. The teacher

interviewees were asked “If you really believe in the effectiveness of a tool and you wanted

to tell the world of introductory programming teachers about the tool, what mechanisms

would you use to communicate with these teachers, knowing that all introductory

programming teachers ARE NOT hooked into listserves?” As an alternative means of

sharing information about pedagogical tools, the college educators that were interviewed

suggested the Consortium for Computing Science in Colleges (CCSC) conferences. There

are ten conferences annually, one in each of the ten regions of the United States. Most

conferences welcome and encourage secondary school teachers to attend. Both the

secondary school teachers and the college teachers that were interviewed suggested the

Computer Science Teachers Association (CSTA) as an alternative means of informing

K-12 computing teachers about pedagogical tools. The Computer Science & Information

Technology (CS & IT) Symposium was the most mentioned CSTA resource. Although

conducting workshops at the SIGCSE Symposium was a resource for many of the tool

developers, few of them have personally outreached to the secondary school community at

the CS & IT Symposium.

The interviews with the tool developers confirmed that teacher recommendation

(word-of-mouth) was the primary source of advertisement. Teachers and tool developers

agreed that high school teachers are usually departments of size one, “not well-organized

above the local level,” and therefore more challenging to reach than are college computer

science educators.

Although recommendation was the primary influence for secondary school teachers to

choose a particular tool, the majority of college respondents indicated that a

task-technology fit that compliments their present teaching style was an impetus for

deciding which pedagogical tools to incorporate into their courses. Regardless of teaching

level, those interviewed confirmed that they choose pedagogical tools that will allow them

www.manaraa.com

150

to teach what they are teaching more effectively and more efficiently. “The tool has to

have some kind of added value beyond just that its nifty to look at or cool to use.”

The review of literature completed for this dissertation confirms that all of the tool

developers or members of the development teams provide information about the

pedagogical tool through articles in professional journals yet only 9% of the total

respondents to the survey read about the tool in a professional journal.

8.3.1.3 Teaching Experience

The comfort level of the teacher with the subject material and with teaching the subject

material may have a great deal to do with using a pedagogical tool effectively and

efficiently. More than 84% of the total survey respondents have taught the introductory

programming course five or more times and more than 43% of the respondents have used

the tool that they were evaluating five or more times. Comfort level with the course

content and with teaching the course content contributes to the reaction that a major

influence on which tool to use, as described by a teacher interviewee, is dependent on the

tool replacing something that the tool does better (improving functionality) or adding to

what is already being done (adding functionality). The teachers interviewed speak from

experience when they confirm that a good tool will help with better, different, and/or

deeper learning outcomes.

8.3.1.4 Learning the Tool

Before introducing the tool to the students, the teacher may wish to learn about the tool.

There are two aspects of this learning process: the tool’s “nuts and bolts” (how the tool

works), and how to best incorporate the tool to benefit from the pedagogical goals for

which the tool is designed. The easier of these two aspects is learning how the tool works.

The survey indicates that more than 50% of those responding had no formal training in

the use of the tool. They knew nothing about the tool and learned by experimentation.

This was echoed by respondents of microworlds, IDEs, and visualization tools. About 70%

of the total repsondents agreed that this training was enough. The teachers interviewed

www.manaraa.com

151

confirmed that, in the field of computer science, teachers learn tools by “fiddling around”

with them. This was qualified by noting that teacher experience helps with that learning

process and that “fiddling” may allow the teacher to learn how the tool works but won’t

offer much in using the tool effectively within a pedagogical framework. The why and

when are not necessarily the results of the how.

As discussed in Section 4.2, people learn in different ways. Learning depends on

experience but also requires reflection, developing abstractions, and active testing of these

abstractions [233]. This applies to teachers as well as students. The learning cycle usually

starts with the “Why”, to motivate the material and to give the “big” picture. Although

many computer science teachers may learn the “nuts and bolts” of the tool by reading

manuals (19%), using tutorials provided by the tool (18%), or “fiddling around,”

face-to-face workshops allow for active engagement of the participants where the tool and

its pedagogical strengths (the “Why”) can be observed. Although many of those

interviewed learned tools without formal training, the majority felt that face-to-face

workshops offered the greatest return for the time spent learning the tool. Teacher

workshops may be impractical for some, schedule-wise or financially. An alternative

mentioned by the interviewees was short video clips on the tool use and its pedagogical

strengths. Web-based training would be agreeable if it didn’t require a great deal of time.

Some of the teachers interviewed were comfortable learning the tool with their students

though they also confirm that they are learning more about the how and not much about

the why when they do this. The second time teaching with the tool may focus more on

the why. Again, the comment of the interviewee stresses the goal: The tool has to have

some kind of added value beyond just: “it’s nifty to look at.”

Often times when teachers are asked why they do not use a certain tool in their class, the

response is that they do not have time to learn the tool and/or they can not afford to the

time to use the tool in their class because it would take away from the curriculum that

they must cover. Time seems to be a focus in a teacher’s reaction to incorporating a new

www.manaraa.com

152

or different pedagogy into their programming course. Time is valuable and there is little

of it to spare. This is of primary importance in the secondary schools where the computer

science teacher has multiple preparations and little time to prepare. As one teacher

interviewee states, “if learning the tool takes too much time, then I am not going to use

it.” Although all of those teachers interviewed are familiar to the reactions citing time

issues, the interviewees all agree that good tools will end up making time. As was stated

in the teacher interviews:

• It doesn’t matter if lots of material is covered if the students don’t understand and

absorb it.

• If a tool helps with better learning outcomes, it ends up saving time, giving the

teacher time to spend on different or deeper concepts thus resulting in better

learning outcomes.

Choosing the right tool to use for the appropriate pedagogical goals involves learning the

tool and learning about the tool. The interviewees’ recommendation for successful tool

integration is for the teacher to learn the tool and learn about the tool before introducing

it in the educational environment and integrating it into the curriculum.

8.3.2 What Characteristics are Perceived by Teachers to Contribute
to the Effectiveness of the Tool(s) they Choose to Use in an
Introductory Programming Course?

Several major themes categorize characteristics perceived by teachers to contribute to the

effectiveness of a pedagogical tool.

• Manageable environment

• Active learning

• Visual environment

• Flexible Environment

• Adequate preparation for subsequent courses

www.manaraa.com

153

• Programming activities

• Tool resources

• Eases teaching

• Eases and promotes learning

The researcher acknowledges that each of these themes may have a different level of

importance for each individual teacher. The researcher also acknowledges that the teacher

is the connecting link between the tool and the students [165, 135] and that it is not only

the tool, but how, when, and why the teacher incorporates tool into the curriculum that

contributes to its effectiveness in the classroom setting. This research was designed to

gather information about tool characteristics that contribute to the effectiveness of

pedagogical tools used in introductory programming courses as perceived by the teachers

using the tools in these courses. The results of this study, when communicated to other

computer science educators, provide information that may serve as a guide in the adoption

of pedagogical tools in an introductory programming course. The results also provide tool

developers with information that may contribute to the development of a more effective

tool that will be adopted on a larger scale. The major themes that categorize the

characteristics that are perceived to contribute to the effectiveness of a pedagogical tool

will be discussed individually.

8.3.2.1 Manageable Environment

The majority of all survey respondents, regardless of gender and teaching level, indicate

that the tool supports an intuitive interface and has a learning curve that is not too steep

are characteristics that contribute to the effectiveness of the tool. A majority of those

teachers evaluating microworlds and visualization tools confirmed this. Microworlds, IDEs

and visualization tools were perceived to simplify the mechanics of programming by a

majority of those evaluating these tools. Simplifying the mechanics of programming was

perceived to contribute significantly to the effectiveness of the tool by most survey

respondents. Simplify is the key. Interviews with tool developers’ confirmed a

www.manaraa.com

154

development goal of “allowing students to understand deeper concepts easily and quickly.”

Although a goal of the tool developers and a characteristic perceived by teachers to

contribute to the effectiveness of the tool, simple and manageable is not always a

characteristic that is evident. One teacher interview revealed that the students were

excited about the tool and they wanted to use it at home but it was a nightmare to setup.

When the interviewed teachers were asked “What information or suggestions would you

like to share with the tool developers?”, the consensus was that the tool should be “plug

and play”, extremely easy to get up and running. “The ideal would be something that’s

all self-contained and works for whatever the purpose is.”

Those respondents evaluating microworlds, libraries, and IDEs believe that technical

difficulties with installation was a tool characteristic that interfered with learning.

When asked what characteristics should be better supported by the tool developers,

microworlds and IDEs were perceived by the survey respondents to be too restrictive or

too big (respectively) for introductory programming classes. The researcher acknowledges

that some tools are specifically designed to be “small”. Quoting a tool developer, “We

tried to keep it very simple so that it would run on minimal equipment. That’s probably

the biggest value. Its purpose is quite limited by design. We had a few things we wanted

to focus on. So it does, what it was designed to do.”

Some tools are used in introductory classes but are intended for software professionals:

Professional IDEs are designed to help software developers write programs more quickly

and produce better quality code. This is not the focus in an introductory programming

course. Some observations indicate that the professional IDE is challenging to students but

the challenge actually inspires he students’ “can-do” attitudes. They also observed that

after using a professional IDE, most of their students showed a sense of confidence [41].

The teachers involved in this study believe that a manageable environment contributes to

the effectiveness of the tool. Having a manageable environment allows a teacher to

www.manaraa.com

155

concentrate on higher level programming skills without focusing on technical issues and

installation difficulties. A manageable environment simplifies the mechanics of

programming allowing the teacher to focus on higher level problem solving skills. The

survey data, supported by the teacher interviews, propose that a manageable environment

is ideally an all-in-one tool that is “plug and play”.

8.3.2.2 Active Learning

Active learners learn by trying things out and working with others. Uses active learning

techniques is one of the seven principles based on research on good teaching and learning

offered by Chickering and Gamson [42] and one that is supported by the respondent in

this study. A majority of the survey respondents, regardless of gender or teaching level,

considers active learning as a characteristic that contributes to the effectiveness of the tool

evaluated. The characteristics related to active learning in this study include:

• supports an interactive environment

• supports students’ active engagement in learning activities

Supporting students’ active engagement in learning activities was perceived to significantly

contribute to the tool’s effectiveness by all respondents regardless of gender or teaching

level. Past research confirms that students learn best when actively engaged in the

learning process [42, 202].

Although those evaluating microworlds perceived a characteristic that contributed to the

effectiveness of the microworld to be that the microworlds encouraged students to learn

through discovery, this was not a characteristic perceived by the respondents to be

common to the other tool categories.

The teachers involved in this study believe that students should be actively engaged in the

learning process and that a pedagogical tool used in an introductory programming course

should support a student’s active involvement. Although some tools may be used for

demonstration purposes only, teachers perceive student involvement to be essential in the

www.manaraa.com

156

learning process. Although supporting active engagement in learning activities is a

characteristic that teachers perceive to contribute to the effectiveness of a tool, the

researcher acknowledges that it is the teacher’s methodology that initiates active learning

in the class environment. An effective tool encourages this methodology.

8.3.2.3 Visual Environment

The Felder-Silverman Learning Style Model classifies students according to four

dimensions [214]. One of these dimensions is visual learners (prefer pictures, diagrams,

flow–charts) ←→ verbal learners (prefer written or spoken explanations). A previous

study done by Allert found that reflective and verbal learners experienced more success in

CS1 and CS2 courses than did those students classified as active or visual learners [8].

Most recently, the developers of pedagogical tools have dealt with this in a variety of

ways. In all four tool categories, a majority of survey respondents have perceived some

characteristic dealing with graphics or program visualizations as a characteristic that

contributes to the effectiveness of the tool. The characteristics supported vary. Libraries

provide graphics or media rich environments; IDEs support visualization of OO concepts;

Visualization tools provide multiple views at once; Microworlds support visualization of

program state and state changes. The total respondents considered supporting the

visualization of OO concepts to contribute significantly to the effectiveness of the tool;

they also believed that this concept was not adequately supported by the tool being

evaluated.

It is interesting to note that a majority of college respondents did not focus on graphics or

visualizations as contributing to the effectiveness of the pedagogical tool being evaluated

but they did perceive that supporting the visualization of OO concepts was not adequately

supported by the tools evaluated.

8.3.2.4 Flexible Environment

The Logo programming language is often described as having a low floor and high ceiling:

it is easy for novices to get started (low floor) and possible for experts to work on

www.manaraa.com

157

increasingly sophisticated projects (high ceiling). Resnick and Silverman have added a

third dimension to their work in designing construction kits for kids: wide walls. They

design technologies that support and suggest a wide range of different explorations [191].

“Low floor, high ceiling, wide walls” was quoted in both the teacher interviews and

interviews with the tool developers and is supported by the survey results as a

characteristic that significantly contributes to the effectiveness of a pedagogical tool.

A majority of respondents, regardless of teaching level or gender and regardless of tool

category perceive that allowing for use at many levels of learning is a characteristic that

contributes to the effectiveness of the tool. Respondents perceive microworlds to engage

students of different ability levels, attract a diverse group of students, and allow for

students to work at the level of their (the student’s) choice. These same respondents

believe that microworlds do not adequately allow for use at many levels of learning.

A tool that can be used for the duration of the course is a characteristic that is perceived

to contribute significantly to the effectiveness of the tool by the majority of respondents

regardless of gender or teaching level in three of the four tool categories: libraries, IDEs,

and visualization tools. This is a characteristic that was not perceived as contributing to

the effectiveness of microworlds.

The teachers involved in this study perceive a flexible environment as a characteristic that

contributes to the effectiveness of a pedagogical tool. Ideally, a flexible environment

introduces students to programming in a gentle and appealing way but also allows them

to progress to more advanced features within the environment at appropriate points in the

course. A flexible environment allows for a seamless transition to subsequent courses. It

has “low floors, high ceilings, and wide walls” [191].

8.3.2.5 Subsequent Courses

When asked for the name of the programming course in which the pedagogical tool is

being incorporated, the responses included such titles as:

www.manaraa.com

158

• Computer Science 1

• Introduction to Programming

• Introduction to Object-Oriented Programming

• Introduction to Java

• Fundamentals of Computer Science

• Advanced Placement Computer Science

The question that was not asked in the survey was, “After completing this course, do you

expect the students to continue their formal education by taking subsequent courses in

computer science?”

One might assume that a course that has a ‘1’ at the end of its name would lead to a

second course: Computer Science 1 followed by Computer Science 2. One might also

assume that an Introductory course is followed by an Intermediate course in the same

discipline and that an Advanced Placement Computer Science course may earn a student

credit in the college computer science department thus placing the student in a higher

level computer science course in the college setting. Another assumption may be that

since 23.5% of the total respondents designated their courses as requirement for the

computer science major, at least 23.5% of the courses are preparing the students for

subsequent computer science courses. These assumptions may or may not be correct.

To get a better picture of what might be expected from students taking these computer

science courses, the responses of secondary school teachers and of college teachers are

looked at separately.

At the secondary level, 71.2% of those responding indicate the course is an elective course.

In most states in the United States, computer science is not a required disciple and so any

course in computer science would be listed as an elective and that designation gives little

information. However, 47.2% (59/127) of the secondary respondents indicate that the

www.manaraa.com

159

course is designated as Advanced Placement. By the nature of the Advanced Placement

Program, the students successfully completing the course are expected to be prepared to

continue on to subsequent computer science courses at the college level.

At the college level, 70.2% (40/57) of the respondents indicate that the course is

designated as a requirement for the computer science major. This would imply that the

course is designed to prepare the student for the next sequential course in the computer

science major.

Considering both categories (majors requirement on the college level and Advanced

Placement on the secondary level) at least 53.8% of those teachers responding are teaching

courses that will prepare the students for subsequent courses in computer science.

The majority of all respondents regardless of gender or teaching level perceived: After

using this tool students are ready to extend their knowledge by continuing in computer

science curricula to be a characteristic that contributed to the effectiveness of the tool.

This is supported by the course designation as described above. The majority of those

evaluating microworlds and IDEs also perceived this to be a characteristic contributing to

the effectiveness of the tool.

Those evaluating libraries perceived that the use of libraries in the introductory

programming course helped with the retention in the course and that this significantly

contributed to the effectiveness of the tool.

There was a consensus among those responding about the students’ transition to

subsequent programming courses. All respondents regardless of gender or teaching level

perceived that the transition to a more robust programming environment was not

adequately supported by the tool. Those evaluating microworlds believed that the

microworlds did not adequately support transition to the real world and did not

adequately support good object-oriented style believing that good object-oriented style

may be distorted by pragmatics and limitations of the tool.

www.manaraa.com

160

The teachers involved in this study all use pedagogical tools in an introductory

programming course. Inevitably, there is some course that follows an introductory course.

Ideally, a pedagogical tool will support a seamless transition to subsequent courses.

Students will not be required to unlearn concepts due to the inadequate or misleading

representation of these concepts within the tool’s environment.

8.3.2.6 Programming

This study focuses on the pedagogical tools that teachers use in their introductory

programming classes. How the tool supports programming concepts is important in

deciding the characteristics that contribute to the effectiveness of the tool. A sub theme in

this category surfaced as programming small pieces. A majority of those evaluating IDEs

and visualization tools perceived that the step-by-step evaluation of single programming

statements was a characteristic that contributed to the effectiveness of the tool. College

respondents perceived supporting incremental development contributed significantly to the

effectiveness of a tool. The total respondents, regardless of gender, perceived that

supporting the testing of the individual components contributed significantly to the

effectiveness of the tool. JUnit and JamTester are both tools that support unit testing

and were both tools that were listed in the “other” choice of tools being used in the

introductory programming course as documented in Table 3, Section 7.2.

A majority of respondents, regardless of teaching level, perceived supporting debugging in

an easy way to be a characteristic that contributed to the effectiveness of the tool. Those

evaluating IDEs and visualization tools felt that this contributed significantly to the tool’s

effectiveness.

A majority of respondents, regardless of gender or teaching level, perceived supports

comments and documentation as a characteristic that contributed to the effectiveness of

the tool but believes that the tool does not adequate provide meaningful error messages.

Secondary school teachers and those evaluating IDEs believe that the tool did not

adequately prevent syntax errors.

www.manaraa.com

161

As mentioned earlier, supporting an interactive environment is perceived to be a

characteristic that contributes to the effectiveness of the pedagogical tool by the majority

of all respondents, regardless of gender, teaching level, or tool category being evaluated.

Event-driven programming is a paradigm in which events trigger actions. Mouse clicks

may trigger certain responses in the program outcome while key-presses may trigger other

responses. Event-driven programming supports an interactive environment. A majority of

those evaluating microworlds perceived supports event-driven programming to be a

characteristic that contributed to the effectiveness of the tool. Those evaluating libraries

perceived this characteristic to contribute significantly to the effectiveness of the tool.

College respondents, female respondents, and those evaluating visualization tools believed

that this characteristic was not adequately supported by the tool being evaluated.

Programming involves several activities, e.g., learning the language features, program

design and implementation, testing, and program comprehension [5]. Pedagogical tools

designed to be used in an introductory programming course should adequately support

these activities. The teachers involved in this study believe that the tool should support

the ability to test individual components, support debugging in an easy way, and give

immediate feedback about errors. The survey results indicate that providing meaningful

error messages is not adequately supported by the tool and, in most cases, event-driven

programming is not adequately supported by the tool.

8.3.2.7 Tool Resources

A tool is of little value if not used. As discussed previously, a teacher learns how to use a

pedagogical tool (“the nuts and bolts”) in a variety of ways. Incorporating the use of the

tool in the introductory programming class does not necessarily result from learning how

the tool works. The majority of the survey respondents, regardless of gender, teaching

level, or tool category being evaluated, perceived the tool can be used regardless of the

textbook chosen as a characteristic that contributed significantly to the effectiveness of the

tool. However, secondary school teachers, college teachers, those evaluating microworlds,

and those evaluating IDEs believed that textbooks that use the tool is a characteristic that

www.manaraa.com

162

is not adequately supported. The majority of all respondents perceived that

characteristics contributing to the effectiveness of the tool included the availability of

tutorials and teacher’s guides and the ability to find materials through on-line searches.

All respondents, regardless of gender and teaching level, believe that the tool does not

adequately support the following tool characteristics:

• A mechanism for sharing materials is provided by the author or the community.

• Instructor resources (PP presentations, sample problems and labs, syllabus) are

provided by authors or community.

The teacher interviews provide more depth to this response:

• “If you don’t know how you are going to use the tool, it will be more of a disaster

than anything else.”

• “They(teachers) need to have a pedagogical framework for what the tool is suppose

to be able to do.”

• “Teachers need pedagogical examples of why the tool is strong.”

Many of the tool developers offer some form of teacher resources that are available on-line

[6, 28, 62, 77, 82, 83, 104, 107, 108, 152, 166] and most tool developers offer some means of

communication through the tool’s web site or the author’s web site. Technical support

provided by the authors or the community is a characteristic perceived to contribute to the

effectiveness of the tool by a majority of the respondents regardless of gender or teaching

level. This characteristic was considered to contribute significantly to the tool’s

effectiveness by those evaluating IDEs.

Although many teachers learn the how of the tool by “fiddling around”, auxiliary

resources can provide the teacher with a pedagogical framework in which to incorporate

the tool. As confirmed by teacher interviews, time is a valuable resource. Developing

meaningful activities, challenging projects, and engaging presentations is time-consuming.

www.manaraa.com

163

Providing resources for tool use provides guidance for the why and the when that support

sound pedagogical goals.

8.3.2.8 Teaching

Programming is a key objective in most introductory computing classes and it is a skill

that is both challenging for teachers to teach [91, 94, 124, 140, 200, 231] and difficult for

students to learn [18, 91, 94, 116, 149, 151, 177, 214, 225]. For students to achieve better

comprehension of programming and to enhance understanding of programming concepts,

teachers of introductory programming have adopted a myriad of pedagogical tools. Some

teachers incorporate the use of a single tool in the course while others use a variety of

tools in a single course. Regardless of the tool category or number of tools used, the

teaching of programming has been enhanced and improved by the inclusion of pedagogical

tools. The teachers involved in this study use pedagogical tools in their introductory

programming courses and will continue to use those tools in future courses. Table 42

confirms this. The Likert scale responses of those using the tool indicate the following:

• 96% of those teachers using a tool agree or strongly agree that they will continue to

use that toold in future courses.

• 95% of those teachers using a tool agree or strongly agree that they will recommend

the tool to other computer science educators.

• 88% of those teachers using a tool agree or strongly agree that using this tool in

their introductory programming class eases and promotes the teaching of

programming.

• 74% of those teachers using a tool agree or strongly agree that using this tool in

their introductory programming class eases and promotes the teaching of

object-oriented concepts.

The majority of all survey respondents, regardless of gender, teaching level, or tool

category being evaluated, perceived that being a good tool for classroom demonstrations is

a characteristic that contributes to the effectiveness of the tool. Finally, all interviewed

www.manaraa.com

164

teachers agreed that the way they teach would change significantly if the tools were

removed from their teaching repertoire.

The teachers involved in this study successfully integrate the use of pedagogical tools in

introductory programming courses. The teacher interviews support a modification of

Michael Kölling’s hypothesis presented in Section 2.2: The difficulties and problems in

teaching programming “could be overcome or reduced through the use of appropriate

tools.” The teachers involved in the study agree that an effective tool facilitates the

teaching of the most critical topics in a programming course.

8.3.2.9 Learning

Teachers are the the most influential factor and the connecting link between the

pedagogical software and the students [165, 135]. Engaging students is critical to deep

learning [91] and today’s learners are motivated in ways unlike previous generations. A

majority of the survey respondents, regardless of gender, teaching level, or tool category

being evaluated, believe that the tool eases and promotes the learning of programming.

These same majorities perceived helps with the understanding of program execution to be

a characteristic that contributes to the effectiveness of the tool. The Likert scale responses

of those using the tool indicate the following:

• 87% of those teachers using a tool agree or strongly agree that using this tool in

their introductory programming class eases and promotes the learning of

programming.

• 73% of those teachers using a tool agree or strongly agree that using this tool in

their introductory programming class eases and promotes the learning of

object-oriented concepts.

A majority of those evaluating microworlds, libraries, and IDEs perceived supports the

understanding of abstract and complex concepts to be a characteristic that contributes to

the tool’s effectiveness. Those using and evaluating microworlds indicated that the tool

did not adequately support abstraction This was also a characteristic perceived by

www.manaraa.com

165

secondary school teachers not to be adequately supported by the tool. Although a

majority of secondary school teachers perceived the tool embodies ideas that support core

programming concepts to be a characteristic that contributed to the tools effectiveness,

they also felt that this characteristic was not adequately supported by the tool. A

majority of those evaluating microworlds perceived supports a concepts first approach to

significantly contribute to the tool’s effectiveness.

A tool that supports the understanding of program execution and the understanding of

abstract and complex concepts eases the learning of programming. These characteristics

are supported in a variety of ways by the tools belonging to the different tool categories.

8.3.3 What are the Perceived Characteristics of a Pedagogical Tool
that Hinder (or get in the way of) Teaching and/or Learning in
an Introductory Programming Course?

The survey queried teachers about characteristics of the tool that are perceived to hinder

the learning or the teaching of programming. The majority of respondents, regardless of

gender, teaching level, or tool category being evaluated, indicated that the tool evaluated

had no significant negative aspects related to the tool environment, errors, or support.

Small majorities of those using the tool indicated that the common characteristic across

tool categories perceived to hinder teaching or learning is the generation of cryptic error

messages when using the tool. The interviews with the teachers also pointed to technical

difficulties as interfering with the learning process:

• “The kids couldn’t save their work...”

• “It’s hard to ramp up on.”

• “I couldn’t get it to consistently work.”

• “The program just crashes.”

The survey results indicate that 97% of the teachers using a pedagogical tool in their

introductory programming class will continue to use that tool in future courses. Neither

teaching or learning is hindered enough to discourage the use of the tool.

www.manaraa.com

166

82% of the non-users answered the question focusing on the perceived negative aspects of

the tool being evaluated. Looking only at the non-users responses, the following

characteristics, with percentage of non-users choosing the characteristic, were considered

to hinder teaching or learning:

• Students have technical difficulties (29%).

• The tool is too big for introductory classes (29%).

• The learning curve is too steep (25.8%).

• The transition to real-world programming is difficult (25.8 %).

• No easy way to debug (23.3%).

• Technical difficulties with installation (23.3 %).

Although negative aspects are indicated by teachers, users and non-users, when

considering all survey respondents, more that 55% of those responding perceived the tool

being evaluated to have no significant negatives.

Computer science teachers using pedagogical tools in introductory programming classes do

so to make abstract concepts more concrete for the student. But it’s not the tool, it’s how

and when the teacher uses the tool that supports student learning. The researcher agrees

with an interviewed teacher’s statement: “If you don’t know how to use the tool and why

you are going to use the tool, it will be more of a disaster than anything else.”

www.manaraa.com

167

Chapter 9

Summary and Future Work

The basic question is to decide what to do: either to develop a tool for existing

teaching and learning practices, or change teaching and learning practices by

developing a new tool [129].

The goal of this research was to investigate the characteristics that are perceived to

contribute to the effectiveness of pedagogical tools used in introductory programming

classes. This study was motivated by the need to look at changes in pedagogy that can

address the challenges that teachers and students face in an introductory programming

course. In particular, this study investigates the motivations for the integration of

pedagogical tools in introductory programming classes in order to share information with

tool developers about teachers’ perceptions of effective tools in the event that they plan

any improvements, modifications, or innovations and to encourage an efficient and

effective wide spread adoption of the tool information to all branches of the computer

science education community.

My hope is that this research makes some small contribution to the tool developers

repertoire when designing a pedagogical tool and to the programming teacher’s

motivations for choosing a tool to use in an introductory programming course.

The result of this study provides perceptions of a limited population of introductory

programming teachers. The teachers surveyed are most likely at a higher level of

professional involvement in professional conferences, professional development workshops

and activities, and discussion groups focusing on computer science education. The

teachers involved in this study are experienced practitioners in their field. They have

successfully used pedagogical tools in introductory programming courses. Sharing their

perceptions of tool characteristics can contribute to the adoption of a tool by other

www.manaraa.com

168

programming teachers. As Rogers states, “The [individuals’] perceptions of the attributes

of innovations, not the attributes as classified by experts or change agents, affect its rate

of adoption [195].”

The analysis of the interviews shows evidence that those interviewed drew on their

experiences when responding to the questions. The feedback provided by those

interviewed contribute additional insight to and support for the survey results.

9.1 Addressing the Hypotheses

The following hypotheses were stated in Chapter 3 and are addressed in this chapter.

1. Using pedagogical tools in introductory programming classes eases and promotes

the learning of programming.

2. Using pedagogical tools in introductory programming classes eases and promotes

the teaching of programming.

3. Effective pedagogical tools used in introductory programming classes have common

characteristics.

4. Tools that teachers consciously choose NOT to use in introductory programming

classes have common characteristics.

5. Teachers initially choose to use a pedagogical tool because of a perceived

task-technology “fit.”

9.1.1 Using Pedagogical Tools in Introductory Programming Classes
Eases and Promotes the Learning of Programming.

This hypothesis is supported by both the survey results and the interviews with the

teachers. 87% of the teachers surveyed, who are using the tool being evaluated, agree or

strongly agree with this hypothesis. 73% of the teachers surveyed, who are using the tool

being evaluated, agree or strongly agree the the tool also eases and promotes the learning

of object-oriented concepts. The interviews confirm that a good tool will help with better,

www.manaraa.com

169

different, and/or deeper learning outcomes. The survey results indicate that simplifying

the mechanics of programming was perceived to contribute significantly to the

effectiveness of the tool.

Today’s programming students are different from previous generations. They have grown

up in a world of emerging technologies. They interact with information differently from

previous generations. Programming courses integrating appropriate pedagogical tools help

address the needs of this Nintendo generation by providing opportunities for active

learning and by providing visual representations that facilitate the understanding of

programming concepts and program execution. An effective pedagogical tool allows for a

flexible programming environment that addresses the needs of students of various ability

levels and learning styles. An effective tool provides learning experiences that encourage

students to continue in the discipline with a seamless transitioning experience.

9.1.2 Using Pedagogical Tools in Introductory Programming Classes
Eases and Promotes the Teaching of Programming.

This hypothesis is supported by both the survey results and the interviews with the

teachers. 88% of the teachers surveyed, who are using the tool being evaluated, agree or

strongly agree with this hypothesis. 74% of the teachers surveyed, who are using the tool

being evaluated, agree or strongly agree that the tool also eases and promotes the teaching

of object-oriented concepts. The interviews confirm that a good pedagogical tool will give

the teachers (and students) something to allow them to deepen or further their knowledge

more than they would have without the tool. They are then able to exxpand their

knowledge with a constructivist kind of approach.

The interviewed teachers agreed that the way they teach would change significantly if the

tools were removed from their teaching repertoire.

• I don’t know of anything that would let me create and inspect things as easily as

BlueJ.

• It would tremendously change. I probably would not even come close to using the

www.manaraa.com

170

languages and things that I am using today.

• It would have to change. The tool really helped me and it really allowed the

students to get a foundation for when we went to Java.

• A lot would change. I would have to introduce public static void

main(String[] args) again. I think my students have a much better grasp of

objects and classes because of BlueJ.

Today’s programming teachers employ different pedagogies to accommodate different

programming paradigms, different learning styles, and more diverse student populations.

The use of pedagogical tools in introductory programming courses does not in itself make

teachers teach better but teachers are the most influential factor and the connecting link

between the tool and the student, the teaching and the learning. The recommendation of

the programming teacher using the tool is also the most influential reason that tools are

adopted by other computer science educators.

An effective pedagogical tool eases the teaching of programming by providing the teacher

with resources that not only provide the how but explain the why and the when of the

tool integration within the curriculum. An effective tool has sound pedagogical goals and

provides an engaging environment devoid of technical difficulties.

9.1.3 Tools that Teachers View as Effective Pedagogical Tools Used in
Introductory Programming Classes Have Common
Characteristics.

In analyzing the data obtained from the survey and the interviews, several themes

categorizing the characteristics that contribute to the tool’s effectiveness (regardless of

tool category) emerged. The themes and the related characteristics are listed below.

• Manageable Environment

– Has an intuitive interface.

– Has a learning curve that is not too steep.

www.manaraa.com

171

• Active Learning

– Supports and interactive environment.

– Supports the students’ active engagement on learning activities.

• Good First Experience

– Introduces programming in an enjoyable way.

– Students enjoy using this tool.

– Improves firs-time experience.

• Visual Environment

– Supports graphics.

– Supports visualization of OO concepts and program state.

• Flexible Environment

– Allows for use at many learning levels.

– Can be used for the duration of the course.

• Subsequent Courses

– Prepares the student for subsequent computer science courses and a more

robust programming environment.

• Programming

– Supports programming, testing, and debugging in small pieces.

– Supports comments and documentation.

• Resources

– Can be used regardless of textbook chosen.

– Technical support is provided by the author or the community.

www.manaraa.com

172

This is not intended to be an exhaustive list but is representative of those characteristics

that are perceived to contribute to the effectiveness of a tool used in an introductory

programming course by the teachers involved in this study.

The results indicate that the pedagogical tools perceived to be effective share common

characteristics: they provide an environment that is manageable, flexible and visual; They

provide for active engagement in learning activities and support programming in small

pieces; they allow for an easy transition to subsequent courses and more robust

environments; they provide technical support and resource materials. The results of this

study also indicate that recommendations from other computer science educators have a

strong impact on a teacher’s initial tool choice for an introductory programming course.

9.1.4 Tools that Teachers Consciously Choose NOT to Use in
Introductory Programming Classes have Common
Characteristics.

The majority of all respondents, regardless of gender, teaching level, or tool category

being evaluated found no significant negative aspects of the tool being evaluated.

The two characteristics that were mentioned across questions and tool categories and/or

in the teacher interviews as characteristics that interfered with the learning process were:

• Cryptic error messages

• Technical difficulties

• Difficult transition to a more robust environment

As this study confirms, most of the pedagogical tools designed for introductory

programming courses have no significant negative aspects. However, all tools are not

appropriate for all educational environments. As one teacher interviewee puts it, “...Once

you know what your goal is, then you can say this tool either does it or doesn’t do it. Then

it makes not only using the tool better but it makes selecting it or not selecting it easier.”

www.manaraa.com

173

9.1.5 Teachers initially choose to use a pedagogical tool because of a
perceived task-technology “fit.”

Although the teacher interviews support this hypothesis, this survey data do not. Only

37.4% of the total survey responses indicated that a task-technology fit was a reason for

initially choosing to use the tool. This was, however, a majority choice for the college

teachers (54.4%).

The results of both the teacher survey and the teacher interviews clearly underscore the

importance of teacher recommendation when initially choosing a tool to use in an

introductory class. Teachers choose to use a tool because of its perceived value as

determined by other computer science educators. 61% of the total survey responses

indicated that the tool was initially chosen to be used in an introductory programming

course based on the recommendations from other computer science educators.

The respondents directly involved in this study and those computer science educators

involved in the various on-line communities that are addressed in this study are

experienced educators. The researcher is confident that when one of these computer

science educators is influenced by a recommendation, or offers a recommendation, the

recommendation is based on sound pedagogical considerations.

9.1.5.1 Information for Tool Developers and Teachers

Interviews with the teachers and the tool developers confirm that the primary resource for

communicating with computer science educators is through the computer science

educators’ mailing lists. Approximately 4500 teachers are members of SIGCSE Announce

or AP CS EDG.

In a one day’s posting (January 11, 2009) on the AP EDG, the following responses to “I

thought it (Alice) might be a great introduction with a broad appeal, and might help get

the students get ready for the Java needed for AP...Does anyone else have any thoughts on

the appropriateness of Alice for high school?” The responses include the following

comments:

www.manaraa.com

174

• “They (the students) spent hours at home working on it, just for fun”

• “Alice is most appropriate as a first language, be it in Middle School, High School,

or University.”

• “Students love beginning to play with it.

• “My juniors and seniors enjoy Alice very much. We use it in our one term intro

course and it has been a very big hit.”

• “..and my students loved it and learned a great deal about challenging ideas.”

• “Alice is a little simplistic, but that helps keep it out of the uncanny valley.”

• “It made for a good introduction to the idea of objects, but there was a lot of

weirdness in it that made things hard. ”

• “Alice is great for high schoolers”

What troubles the researcher is that the why is not being addressed in most of the above

responses. There is no mention of pedagogical goals in either the question or the

responses. Why is Alice appropriate for high school and for preparing the students for

AP? Only three of the fourteen responses posted in this one day made any mention of the

why or why not.

• “Our 9th graders will spend about 4-5 weeks on ALICE, then SCRATCH, move

onto HTML, Python and JAVA. To me it’s about exposure. This gives the students

opportunities to determine were they want to branch off to i.e. AP CS, the graphics

oriented curriculum with animation and the likes.”

• “It is a great introductory language because you can teach all of the important

programming concepts without getting bogged down with the syntax.”

• “It is my opinion that the pedagogy is not adequately developed. (Some of my

concern is based on the drag-and-drop environment which is both appealing to

www.manaraa.com

175

students and gets in the way of learning solid concepts)....Make sure that you are

using tools that match your goals and intended pedagogy.”

An earlier (similar) thread (August 2008) about the same tool (Alice) includes a thorough

response from a member of the Alice development team. The response addresses the

pedagogical goals of the tool as well as the intended audience.

“... In the traditional introductory level course, we confront our students with

at least four different pedagogical/logistical hurdles in the first couple weeks

of the course. (1) We want them to start to develop an understanding of what

computer science and programming is. (2) We want them to understand that

syntax matters. (3) We want them to learn a new piece of software for being

able to complete their assignments. (4) File management – how an operating

system works (“I cannot find where I saved that file.”). Alice helps to

separate these hurdles and allows students to deal with only one (or possibly

two) at a time.

...

Recognize that Alice, as a tool, was designed specifically for the CS 0 (or

Pre-CS 1) course. It was not designed to be a replacement for other excellent

tools that support the novice programmers as they come to the CS 1 course.

We believe that no one tool is a “one size fits all”. Different teachers and

different students in different courses likely need to use various tools. Also,

experience with more than one tool is a good way to enrich a student’s

background and understanding...”

The researcher encourages computer science educators that respond to questions about

the use of specific pedagogical tools to address the why and when in their responses.

Many of those asking the questions are inexperienced teachers needing guidance. As this

study confirms, most of the pedagogical tools designed for introductory programming

courses have no significant negative aspects. However, all tools are not appropriate for all

educational environments. A teacher asking for guidance in choosing a tool to use in an

www.manaraa.com

176

introductory programming course might benefit more if given information about the

pedagogical strengths and weaknesses of the tool. As one teacher interviewee puts it, “You

have to keep your eye on the prize before you use anything. But once you know what your

goal is then you can say this tool either does it or doesn’t do it. Then it makes not only

using the tool better but it makes selecting it or not selecting it easier.”

The researcher also acknowledges that the members of the tool development teams are

“lurking” out there and encourages them to offer their input to the threads that question

the use of their tool(s) in introductory programming courses. The researcher encourages

the developers to include the pedagogical goals of the tool in their responses, the whys.

As one of the teacher interviewees remarked, “The tool has to have some kind of added

value beyond just: it’s nifty to look at.”

9.2 Related Work and Research

There is a considerable amount of research currently taking place on pedagogical tools

used in the introductory programming course. Confirmation of this can be found in the

ACM Digital library where more than thirty papers or workshops on Alice, more than ten

on Greenfoot, and more than twenty on BlueJ that have been published or delivered in

the last three years. There is no denying that educators are using pedagogical tools in

their introductory courses and computer science education researchers are investigating

different aspects of the tools. As mentioned in Chapter 4, most assessments are done by

the developers of the environments and many assessments being conducted are more

opportunity-directed than problem-directed. Although some tools clearly attempt to

address different learning styles, there is little formal research that supports this, or even

considers this as relevant.

The ACM Educational Council has recently developed a website, Technology that

Educators of Computing Hail, to provide information about present technological tools

used in and outside the classroom [78]. Although the site is in its alpha stage, it may

www.manaraa.com

177

prove to be a valuable resource for information about pedagogical tools used in the

introductory programming class.

Ni from Georgia Institute of Technology has investigated the factors influencing computer

science teachers’ adoption of curriculum innovations [165]. The results indicate that the

decision to adopt an innovation was most significantly driven by teacher excitement, not

the pedagogical value of the approach. Ni’s study suggests that further work is needed on

understanding what makes teachers become excited in a new approach. This study

confirms that need. The information in this dissertation suggests that recommendations

from other computer science educators are the primary catalysts for the adoption of a tool

by teachers of introductory programming courses and not necessarily for the pedagogical

value of the tool.

9.3 Contribution to Knowledge

This dissertation has discussed teacher perceptions of the characteristics of pedagogical

tools that contribute to the tool’s effectiveness when used in introductory programming

classes and the motivations of teachers in choosing the tools to incorporate in their

courses. The purpose of this study was not to produce conclusive results or to make

inferences about the perceptions of the general teaching population but rather to create a

list of characteristics that a tool developer may wish to address in the design or

modification of a pedagogical tool used in the introductory programming course or a

teacher may wish to address when considering the adoption of a particular pedagogical

tool. Teacher perceptions provide a resource that can contribute to an improved design,

delivery, and adoption of pedagogical tools for introductory programming courses.

The data collected in this study are based on teacher perceptions. This data reveal:

• Teachers are influenced by and value the recommendations of other computer

science educators.

• When choosing a tool, emphasis on introducing programming in an enjoyable way is

www.manaraa.com

178

more evident than the emphasis on the pedagogical value of the tool.

• An effective tool used in introductory programming classes provides an environment

that is manageable, flexible, and visual; it provides for active engagement in

learning activities and supports programming in small pieces; it allows for an easy

transition to subsequent courses and more robust environments; it provide technical

support and resource materials.

• The primary resources to reach teachers are SIGCSE Announce and AP CS EDG.

• Face-to-face workshops stressing the pedagogical strengths of the tool is a valuable

resource for teachers.

• The ideal tool has “low floors, high ceilings, and wide walls [191]” and can be used

for the duration of the course.

9.3.1 Information for the Tool Developers

Tutorials and manuals are valuable resources for learning how the tool works. A majority

of the teachers learn the tool by “fiddling around” and using manuals and tutorials when

necessary. What is important for the successful integration of the pedagogical tool is

knowing the why and when of its use. Teacher interviews confirmed that there was great

value in watching a demonstration of the tool or attending a workshop with the tool

developer where the developer focused on the pedagogical strengths of the tool in addition

to the “nuts and bolts” of how to use the tool.

SIGCSE symposium was the primary resource for the workshops. Not many secondary

school teachers attend SIGCSE. The CSTA CS & IT Symposium is designed for secondary

computing teachers. Tool developers might consider presenting workshops or

demonstrations at this symposium or actively engage in other outreach to secondary

school teachers.

Another effective method is to provide short video clips of the tool use and pedagogical

strengths. Although some developers offer tutorials that are incorporated in the tool are

www.manaraa.com

179

of great help in learning the how, to effectively use the tool, the why needs to be stressed.

The teacher interviews asked, “What do the authors of the tools need to know or to ask

the teachers?” Most of those interviewed replied,“what works and what doesn’t work”.

The researcher is aware that tool developers are receptive to feedback. Perhaps more can

be learned by actively seeking feedback from the teachers.

9.3.2 Information for the Teachers

The interview results of this study clearly support the use of pedagogical tools in an

introductory programming course. Those interviewed all agree that learning to use the

pedagogical tool takes time. Time is valuable and there is little of it to spare. This is of

primary importance in the secondary schools where the computer science teacher has

multiple preparations and little time to prepare. Good tools will end up saving time. If a

tool helps with better learning outcomes, it ends up saving time, giving the teacher time

to spend on different or deeper concepts thus resulting in better learning outcomes.

It is not enough to know how to use the tool, the tool needs to add value to the course

and fit the appropriate pedagogical pocket.

The tool developers are all receptive to comments and suggestions. Some tool developers

host workshops and address the concerns and suggestions at these workshops. Teachers: If

you have suggestions or concerns, let the tool developers know about them.

9.4 Future Work

The purpose of this study was not to produce conclusive results but rather to create an

informal list of characteristics a tool developer may wish to address in the design or

modification of a pedagogical tool. The study also provides information about the

motivations of teachers in choosing tools to incorporate in their programming courses.

The study did not analyze each individual tool nor did it focus on a particular category of

tools. The purpose was to gather general information on the attributes shared by

successful tools (as perceived by the teacher) regardless of the tool category.

www.manaraa.com

180

Most research done in the area of pedagogical tools focuses on one specific tool and its

effectiveness (proven or observed) or one category of tools (e.g. Visualization tools) and

the effectiveness of this type of tool on student learning. This study investigates the

effectiveness of tools across categories. It is not a quantitative analysis of tool

effectiveness; it is a study of the perceptions of teachers using these tool in the

introductory programming classes.

From this study, it is strikingly clear that teachers who are using pedagogical tools in

introductory programming classes do so primarily because they perceive the tools to ease

and promote the teaching and learning of programming. Typically they have become

convinced of the tool’s benefits from the recommendations of other computer science

educators. Although it is not clear that these recommendations are being made based on

the pedagogical strengths of the tool, the researcher is confident that when one of these

computer science educators is influenced by a recommendation, or offers a

recommendation, the recommendation is based on sound pedagogical considerations.

This study serves as a starting point for more formal research and as a resource for

teachers, future took developers, and those involved with computer science curriculum

development.

Research is needed to validate the teacher perceptions of the characteristics that

contribute to the effectiveness of a pedagogical tool used in introductory programming

classes. This study provides a listing of characteristics perceived to contribute to the

effectiveness of a tool. The results of this study can be validated by a measurable

assessment of the pedagogical tools based on these characteristics.

It would also be useful to investigate the teachers’ knowledge about the tool when it is

initially chosen to be used in the introductory programming classes. Are the learning

objectives of the course a good match with the pedagogical strengths of the tool? To what

extent does the tool meet the learning objectives of the course. These questions can be

investigated using measurable techniques.

www.manaraa.com

181

The results of Ni’s study [165] suggest that “teacher excitement in a new approach drives

adoption, while more organizational or social issues inhibit adoption.” The results were

based on workshop participants using specific pedagogical tools. Ni’s study, together with

the results of this research, confirm that the teachers’ perceptions about a tool influence

the adoption of the tool. Research that focuses on the adoption of tools based on

pedagogical goals is needed. When the teachers choose to adopt a tool, do they

understand the pedagogical strengths and weaknesses of the tool?

Echoing Kim Bruce, “It would help if a group of experts in educational research were to

design experiments that will allow faculty to examine the success of the innovative

approaches proposed for teaching Java in CS1 [32].”

www.manaraa.com

Appendix A

Pedagogical Tools Survey for Teachers

182

www.manaraa.com

Page 1

Pedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for Teachers

I am conducting research on pedagogical tools used by computer science educators in introductory programming
courses. These tools can be categorized in a variety of ways: Algorithm Visualizations, Algorithm Animations,
Microworlds, Integrated Development Environments, Robots, Game Making Tools, etc.

I have tried many of them in my own classes, some successfully and some not. In an effort to identify the
characteristics of an effective pedagogical tool, I am requesting that you complete a survey for the tool (or tools)
that you use (or have used) in your programming course. I am interested in both your successful experiences and
your unsuccessful experiences!

Some of the popular tools are listed below but there are hundreds of others.

Alice, BlueJ, Buggles and Bagels, CodeWiz, DrJava, DrScheme, Eclipse, GameMaker, Greenfoot, Gridworld, Greeps,
JamTester, Java Task Force Graphics, JCreator, Jeliot 3, Jeroo, jGrasp, JHAVE, JPie, Java Power Tools, Junit, Karel J.
Robot, LEGO Mindstorms, Media Computation, NetBeans, ObjectDraw, PigWorld, RAPTOR, Robotran, Scratch,
XTANGO, ZEUS

If time permits, please complete one survey for each tool with which you have experience.

1. Name of tool:

2. Are you presently using this tool in your course?

3. Why did you initially choose to use this tool in your programming course? Check all
that apply.

1. General Information

*

Tool

Used

If OTHER, please specify

yesnmlkj

nonmlkj

(A) to attract a diverse group of studentsgfedc

(B) to increase my enrollmentgfedc

(C) to introduce programming in a more enjoyable waygfedc

(D) recommended to me by other computer science educatorsgfedc

(E) task-technology "fit"gfedc

(F) tool complements my teaching stylegfedc

(G) trying to move away from a purely traditional(lecture) teaching approachgfedc

(H) read about it in a professional journalgfedc

(I) other (please specify) If listing more than one reason, please list each reason on a separate line.gfedc

183

www.manaraa.com

Page 2

Pedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for Teachers
4. Of the reasons listed above, which ONE reason was the MOST influential for you?

 your choice

reason

If your choice is "(I) other" and you listed more than one reason above,

please clarify which is the MOST influential.

184

www.manaraa.com

Page 3

Pedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for Teachers

Check the characteristics below that you believe contribute to the EFFECTIVENESS of this tool in the teaching and
learning of programming in an introductory programming course.

A tool may have a characteristic that DOES NOT contribute to the effectiveness of the tool. You would NOT check
that characteristic.

All characteristics are not applicable to all types of tools.

1. Check the tool characteristics that you believe contribute to the EFFECTIVENESS
of this tool.

2. Tool Characteristics

(A) has an intuitive interfacegfedc

(B) has a learning curve that is not steepgfedc

(C) supports an interactive environmentgfedc

(D) improves first-time programmer's experiencegfedc

(E) is flexible (allows use at many levels of learning)gfedc

(F) embodies ideas that support core programming conceptsgfedc

(G) supports a concepts-first approach (not syntax)gfedc

(H) supports abstractiongfedc

(I) supports consistent metaphor (e.g. turtles, robots, visual representation of objects)gfedc

(J) includes graphical componentsgfedc

(K) does not restrict scenariosgfedc

(L) restricts scenariosgfedc

(M) incorporates storytellinggfedc

(N) allows for easy transition to a more robust programming environmentgfedc

(O) other (please specify: if listing more than one characteristic, list each characteristic on a different line.)gfedc

185

www.manaraa.com

Page 4

Pedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for Teachers
2. Which of the characteristics checked above do you perceive to be most significant
contributors to the EFFECTIVENESS of this tool.

Use the drop-down menus to choose the letter that corresponds to the characteristic
in the list above. If possible, list your choices in order of importance with the most
important characteristic listed first.

3. Which of the characteristics of those that you DID NOT check above would you like
the tool to support (if any).

Use the drop-down menus to choose the letter that corresponds to the characteristic
in the list above. If possible, list your choices in order of importance with the most
important characteristic listed first.

 Characteristics

1.

2.

3.

 Characteristics

1.

2.

3.

(O) If you ranked O as 1, 2, or 3 and if you listed more than one

characteristic for O, please use the space below to clarify the characteristic for

the specified rank.

Other (please specify any characteristics NOT listed above that you would like

this tool to support. Include your importance rank (1, 2, or 3))

186

www.manaraa.com

Page 5

Pedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for Teachers

The characteristics listed below relate to programming.

Check the characteristics below that you believe contribute to the effectiveness of this tool in the teaching and
learning of programming in an introductory programming course.

A tool may have a characteristic that DOES NOT contribute to the effectiveness of the tool. You would NOT check
that characteristic.

All characteristics are not applicable to all types of tools.

1. Check the PROGRAMMING ENVIRONMENT CHARACTERISTICS that you believe
contribute to the effectiveness of this tool.

3. Programming Characteristics

Question does not apply for this tool.gfedc

(A) simplifies the mechanics of programminggfedc

(B) provides multiple views at once (e.g. code window, animation, state)gfedc

(C) supports incremental developmentgfedc

(D) supports the visualization of the program stategfedc

(E) supports the visualization of state changesgfedc

(F) supports direct state manipulationgfedc

(G) supports visualization of program codegfedc

(H) supports visualization of OO conceptsgfedc

(I) supports visual representation of general programming conceptsgfedc

(J) provides an environment in which sophisticated problems can be solvedgfedc

(K) provides a media rich programming environmentgfedc

(L) Other (please specify: if listing more than one characteristic, list each characteristic on a different line.)gfedc

187

www.manaraa.com

Page 6

Pedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for Teachers
2. Check the TESTING, DEBUGGING, AND INTERACTION CHARCTERISTICS that you
believe contribute to the effectiveness of this tool

3. Which of the characteristics checked above do you perceive to be most significant
for the EFFECTIVENESS of this tool?

Use the drop-down menus to choose the letter that corresponds to the characteristic
in the list above. If possible, list your choices in order of importance with the most
important characteristic listed first.

 Characteristics

1.

2.

3.

Question does not apply for this tool.gfedc

(M) supports step-by-step evaluation of single programming statementsgfedc

(N) supports developing and testing of individual componentsgfedc

(O) supports debugginggfedc

(P) provides meaningful error messagesgfedc

(Q) gives immediate feedback about errorsgfedc

(R) prevents syntax errorsgfedc

(S) does not prevent syntax errorsgfedc

(T) supports comments and documentationgfedc

(U) supports user-provided input datagfedc

(V) supports an easy way of including event-driven programminggfedc

(W) supports introduction of data structuresgfedc

(X) Other (please specify: if listing more than one characteristic, list each characteristic on a different line.)gfedc

(L or X) If you ranked L or X as 1, 2, or 3 and if you listed more than one

characteristic for L or X, please use the space below to clarify the characteristic

for the specified rank.

188

www.manaraa.com

Page 7

Pedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for Teachers
4. Which of the characteristics of those that you DID NOT check above would you like
the tool to support (if any).

Use the drop-down menus to choose the letter that corresponds to the characteristic
in the list above. If possible, list your choices in order of importance with the most
important characteristic listed first.

 Characteristics

1.

2.

3.

Other (please specify any characteristics NOT listed above that you would like

this tool to support. Include your importance rank (1, 2, or 3))

189

www.manaraa.com

Page 8

Pedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for Teachers

The characteristics listed below relate to learning and teaching.

Check the characteristics below that you believe contribute to the effectiveness of this tool in the teaching and
learning of programming in an introductory programming course.

All characteristics are not applicable to all types of tools.

1. Learning

2. Teaching

4. Learning and Teaching Characteristics

(A) supports the understanding of abstract and complex conceptsgfedc

(B) supports students' active engagement in learning activitiesgfedc

(C) engages students of different ability levelsgfedc

(D) allows students to work at levels of their choicegfedc

(E) provides a natural platform for encouraging group workgfedc

(F) encourages learning through discoverygfedc

(G) helps understanding of programming executiongfedc

(H) Other (please specify: if listing more than one characteristic, list each characteristic on a different line.)gfedc

(I) is a good tool for classroom demonstrationsgfedc

(J) supports real world examplesgfedc

(K) can be used for the duration of the coursegfedc

(L) supports a rigid framework where lessons and activities are easily incorporated and/or modifiedgfedc

(M) Other (please specify: if listing more than one characteristic, list each characteristic on a different line.)gfedc

190

www.manaraa.com

Page 9

Pedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for Teachers
3. Which of the characteristics checked in the Learning and Teaching categories
above do you perceive to be most significant for the EFFECTIVENESS of this tool.

Use the drop-down menus to choose the letter that corresponds to the characteristic
in the list above. If possible, list your choices in order of importance with the most
important characteristic listed first.

 Characteristics

1.

2.

3.

(H or M) If your ranked H or M as 1, 2, or 3 and if you listed more than one

characteristic for H or M, please use the space below to clarify the

characteristic for the specified rank.

191

www.manaraa.com

Page 10

Pedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for Teachers

The characteristics listed below relate to auxiliary materials and your perceptions.

Check the characteristics below that you believe contribute to the effectiveness of this tool in the teaching and
learning of programming in an introductory programming course.

All characteristics are not applicable to all types of tools.

1. Auxiliary Materials

2. Perceptions

5. Materials and Tool Summary

(A) Technical support is provided by authors or community.gfedc

(B) Tutorials on using the tool are provided by authors or community.gfedc

(C) Instructor resources (PP presentations, sample problems and labs, syllabus) are provided by authors or community.gfedc

(D) This tool can be used independent of the textbook chosen.gfedc

(E) A mechanism for the sharing of materials is provided by authors or community.gfedc

(F) Textbooks that incorporate this tool are available.gfedc

(G) Materials about this tool can be found through on-line searches.gfedc

(H) Other (please specify: if listing more than one characteristic, list each characteristic on a different line.)gfedc

(I) After using this tool, your students are ready to extend their knowledge by continuing on in a computer science curriculum.gfedc

(J) The initial experience with this tool positively affects subsequent programming experiences.gfedc

(K) Using this tool eases and promotes the learning of programming.gfedc

(L) Students enjoy using this tool.gfedc

(M) Using this tool contributes to an increase in student enrollment in this course.gfedc

(N) Using this tool contributes positively to student retention in course (students do not drop course).gfedc

(O) Using this tool contributes positively to student retention in discipline (students take addition computer science courses).gfedc

(P) Using this tool eases and promotes the teaching of programming.gfedc

(Q) Other (please specify: if listing more than one characteristic, list each characteristic on a different line.)gfedc

192

www.manaraa.com

Page 11

Pedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for Teachers
3. Which of the characteristics checked in the Auxiliary Materials and Perceptions
categories above do you perceive to be most significant for the effectiveness of this
tool.

Use the drop-down menus to choose the letter that corresponds to the characteristic
in the list above. If possible, list your choices in order of importance with the most
important characteristic listed first.

4. Which of the characteristics that you DID NOT check in the Auxiliary Materials
would you like the tool to support (if any).

Use the drop-down menus to choose the letter that corresponds to the characteristic
in the list above. If possible, list your choices in order of importance with the most
important characteristic listed first.

 Characteristics

1.

2.

3.

 Characteristics

1.

2.

3.

(H or Q) If your ranked H or Q as 1, 2, or 3 and if you listed more than one

characteristic for H or Q, please use the space below to clarify the

characteristic for the specified rank.

Other (please specify any characteristics NOT listed above that you would like

this tool to support. Include your importance rank (1, 2, or 3))

193

www.manaraa.com

Page 12

Pedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for Teachers

The characteristics listed below can be perceived as negative. Check those characteristics (if any) that you believe
are NEGATIVE aspects of using this tool in that they either hinder your teaching or your students' learning.

1. Check the characteristics below that you feel are negative aspects of the TOOL
ENVIRONMENT in that they either hinder your teaching or your students' learning. If
the tool has no significant negative characteristics, check the first box.

6. Negatives

no significant negativesgfedc

(A) The environment is too restrictive.gfedc

(B) Students have technical difficulties.gfedc

(C) The learning curve is too steep.gfedc

(D) The tool is too big for introductory classes.gfedc

(E) The tool is too restrictive to use for the duration of the course.gfedc

(F) The transition to real-world programming is difficult.gfedc

(G) The initial experience with tool negatively affects subsequent programming experience.gfedc

(H) The ideas embodied in tool are shallow.gfedc

(I) Good OO style is distorted by pragmatics and limitations of this tool.gfedc

(J) Concepts learned with tool have to be unlearned in subsequent programming courses.gfedc

(K) Other (please specify: if listing more than one characteristic, list each characteristic on a different line.)

194

www.manaraa.com

Page 13

Pedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for Teachers
2. Check the characteristics below that you feel are negative aspects related to
ERRORS AND SUPPORT in that they either hinder your teaching or your students'
learning. If the tool has no significant negative characteristics, check the first box.

no significant negativesgfedc

(L) cryptic error messagesgfedc

(M) prevents syntax errorsgfedc

(N) does not prevent syntax errorsgfedc

(O) no easy way to debuggfedc

(P) technical difficulties with installationgfedc

(Q) no technical supportgfedc

(R) no instructor resourcesgfedc

(S) no student resourcesgfedc

(T) too costlygfedc

(U) not multi-platformgfedc

(V) not open sourcegfedc

(W) Other (please specify: if listing more than one characteristic, list each characteristic on a different line.)

195

www.manaraa.com

Page 14

Pedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for Teachers

The questions on this page pertain to your training in the use of this tool and your experience using it in your
courses.

1. What type of training in the use of this tool did you have before you introduced it
in your programming course?

2. Please indicate your agreement with each of the following statements.

7. Training and Experience

 strongly agree agree
neither agree nor

disagree
disagree strongly disagree

The amount of training I

received in the use of this

tool was enough.

nmlkj nmlkj nmlkj nmlkj nmlkj

I will continue to use the

tool in future courses.
nmlkj nmlkj nmlkj nmlkj nmlkj

I will recommend this tool

to other computer science

educators.

nmlkj nmlkj nmlkj nmlkj nmlkj

Using this tool in my

introductory programming

class eases and promotes

the LEARNING of

programming concepts.

nmlkj nmlkj nmlkj nmlkj nmlkj

Using this tool in my

programming class eases

and promotes the

TEACHING of

programming concepts.

nmlkj nmlkj nmlkj nmlkj nmlkj

Using this tool in my

introductory programming

class eases and promotes

the LEARNING of OO

concepts.

nmlkj nmlkj nmlkj nmlkj nmlkj

Using this tool in my

programming class eases

and promotes the

TEACHING of OO

concepts.

nmlkj nmlkj nmlkj nmlkj nmlkj

(A) no training; knew nothing about tool; learned by experimentationgfedc

(B) observed demonstration of tool at conference but no other traininggfedc

(C) 1-2 hour workshop introducing the toolgfedc

(D) workshop lasting several days on using this toolgfedc

(E) tutorial provided with toolgfedc

(F) users guide or manual provided with this toolgfedc

(G) colleague provided information needed to use this toolgfedc

(H) Other (please specify)gfedc

196

www.manaraa.com

Page 15

Pedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for Teachers
3. If you have used other pedagogical tools in your course, rank the effectiveness of
this tool compared to others you have used.

4. Please add any comments about this tool that you would like to share.

5. If you have any knowledge of research done (or in progress) that involves
measured effectiveness of this tool and you can provide references, please list the
references below.

6. In addition to the this tool, what pedagogical tools (if any) do you use in this
course? If time permits, please complete this survey for each tool.

Most effective tool

that I've used

More effective than

most tools

About the same as

most tools

Less effective than

most tools

Least effective tool

that I've used
No other tools used

effectiveness

of this tool

as compared

to other

tools

nmlkj nmlkj nmlkj nmlkj nmlkj nmlkj

 Tool

1.

2.

3.

4.

5.

Other: Please list each tool on a different line.

197

www.manaraa.com

Page 16

Pedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for Teachers
7. What pedagogical tools (if any) have you used in your programming courses that
you no longer use?

The information about tools consciously NOT chosen is very valuable. If time permits,
please complete this survey for each tool you chose NOT to use.

8. Please add any additional comments that you would like to share.

 Tool

1.

2.

3.

4.

5.

Other: Please list each tool on a different line.

198

www.manaraa.com

Page 17

Pedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for Teachers

The questions below will provide information about the course in which you use this tool.

1. What is the name of your course?

2. Please enter the approximate length of your course (in hours).

3. Check the answer that best describes the status of your course.

4. How many times have you taught this course?

5. In how many classes have you used this tool?

8. Your course

Total Hours of class meetings

electivegfedc

general education requirementgfedc

majors requirementgfedc

honors coursegfedc

AP coursegfedc

Other (please specify)gfedc

1nmlkj

2nmlkj

3nmlkj

4nmlkj

5nmlkj

more than 5nmlkj

1nmlkj

2nmlkj

3nmlkj

4nmlkj

5nmlkj

more than 5nmlkj

199

www.manaraa.com

Page 18

Pedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for Teachers

The questions below provide informatioon about you.

1. Your gender

2. Your affiliation

9. About You

Malenmlkj

Femalenmlkj

middle schoolgfedc

secondary schoolgfedc

2-year collegegfedc

4-year collegegfedc

othergfedc

other (please specify)

200

www.manaraa.com

Page 19

Pedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for Teachers

The following information will be kept private. You will not be identified in any publication or presentation of the
study findings.

1. Your Name

2. Your Affiliation

3. Your email address

4. If you have used at least five of these tools (or chose NOT to use them) in your
courses, would you be willing to help me by participating in an informal interview?

10. More About You

yesnmlkj

nonmlkj

201

www.manaraa.com

Page 20

Pedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for TeachersPedagogical Tools Survey for Teachers

Thank you for completing this survey!
You will now be redirected to the first page of the survey with hopes that you might complete this for another tool.
To exit, simply close the window.

Email me if you have any questions.

Fran Trees
ftrees@drew.edu

1. Please indicate below if you would like to be informed when a summary of the
survey results are available.

11. Thank You

Yes, please send me a link where I can view the results.nmlkj

No, thank you.nmlkj

202

www.manaraa.com

203

Appendix B

Survey Letters

B.1 Survey Notication

Hi!!!

I would like to warn you that I am about to ask you a BIG favor! I will be sending you

information on completing a survey on pedagogical tools. An introduction about the

survey will be in my next email to you. I am working on this for my dissertation and I

would REALLY appreciate your responses. I know that most of you have used tools in

your teaching. If you do NOT use tools, I would appreciate knowing why you choose NOT

to use tools.

My survey is based on introductory programming classesthis could be CS0, CS1 in

universities, pre-AP, AP or other intro courses in high schools and intro to computing in

middle schools.

You may not be teaching these courses now but you are on my list because I value your

opinions. If you have ever taught using tools, please complete the survey. Thanks in

advance for your help!

Fran

Frances P. Trees

Drew University

Math/ CS Department

ftrees@drew.edu

www.manaraa.com

204

B.2 Survey Invitation

Please help me!!!

I am conducting research for my dissertation on pedagogical tools used by computer

science educators in introductory programming courses. These tools can be categorized in

a variety of ways: Algorithm Visualizations, Algorithm Animations, Microworlds,

Integrated Development Environments, Robots, Game Making Tools, etc.

I have tried many of them in my own classes, some successfully and some not. In an effort

to identify the characteristics of an effective pedagogical tool for an introductory

programming course, I am requesting that you complete a survey for the tool (or tools)

that you use (or have used) in your programming course. I am interested in both your

successful experiences and your unsuccessful experiences!

Some of the popular tools are listed below but there are hundreds of others.

Alice, BlueJ, Buggles and Bagels, CodeWiz, DrJava, DrScheme, Eclipse, GameMaker,

Greenfoot, Gridworld, Greeps, JamTester, Java Task Force Graphics, Jeliot 3, Jeroo,

jGrasp, JHAVE, JPie, Java Power Tools, Junit, Karel J. Robot, LEGO Mindstorms,

Media Computation, NetBeans, ObjectDraw, PigWorld, RAPTOR, Robotran, Scratch,

XTANGO, ZEUS

The nature of my research is focused the teacher’s perception of tool effectiveness and not

measured effectiveness of student outcomes. What characteristics do you (the teacher) see

as contributing to the effectiveness of the tool? In other words, why do you choose to use

some tools and choose not to use others?

The survey that I am asking you to complete is divided into several ”pages” or parts:

1. General information (what tool are you using, why did you choose this tool)

2. General tool characteristics that you feel contribute its effectiveness.

3. Programming environment, testing, debugging, and interaction characteristics that

you feel contribute its effectiveness.

4. Characteristics that contribute to the effectiveness of this tool as they relate to

www.manaraa.com

205

student learning and your teaching.

5. Auxiliary materials that contribute to the effectiveness of the tool and your

perceptions of using the tool in your class.

6. Page 6 focuses on NEGATIVE aspects of the tool (if you feel any exist).

7. Page 7 gathers information about the amount of training you had and your

experience using the tool.

8. Pages 8, 9, and 10 collect basic information on your course and you.

Yes, it does seem long but the questions are objective: check characteristics that

contribute the tool’s effectiveness and choose the most important of these characteristics.

Most pages have only 2-4 questions. The survey should take about 15 minutes to complete.

All questions are not applicable for all tools. If the question is not applicable, check ”does

not apply.” Your opinions are important to me. The tools you choose NOT to use and the

reasons you chose NOT to use them are as important as the tools you continue to use.

Please help me by completing this survey for at least one tool that you value (preferably

more) and one tool that you have tried and are no longer using.

The survey is available at:

http://www.surveymonkey.com/s.aspx?sm=OQkR_2fsS1DsgdnFiiLgKgLA_3d_3d

If possible, please complete the survey by date.

Thank you SO much!

Fran Trees

ftrees@drew.edu

www.manaraa.com

206

B.3 Invitation Follow-up

Hello again!

I know you are probably very busy and have more than enough to fill your free moments

(if you have any) but I don’t want you to forget about me (actually my survey)! If you

haven’t already completed my survey about pedagogical tools used in introductory

programming courses, please remember to do so by date! I do appreciate your help! The

survey is available at:

http://www.surveymonkey.com/s.aspx?sm=OQkR_2fsS1DsgdnFiiLgKgLA_3d_3d

Feel free to share this URL with a colleague! If you have any questions, please let me

know!

Thanks again.

Fran

Frances P. Trees

Drew University

Math/ CS Department

ftrees@drew.edu

www.manaraa.com

207

Appendix C

Interview Questions

www.manaraa.com

Interview Questions for Teachers

You indicated that you use (or consciously chose NOT to use) 5 or more of the tools listed. You've used more

tools in your class than many teachers do. Actually, some teachers choose not to use any tools.

1. What tools have you used?

2. How do you find appropriate tools to use?

3. What influences you to use a particular tool?

4. Some research indicates that teachers do not use tools in their class because

a. They do not have the time to spend learning the tool.

b. They cannot afford the time to use the tool in their class because it would take time away

from the curriculum that they MUST cover.

 How do you respond to these issues? (How do you find the time to learn the tools?)

 What were your first-time experiences using this tool?

5. If you had the chance to work with the author(s) of the tools that you use (or have used) what

experiences and information would you share what them?

6. If you really believe in the effectiveness of a tool and you wanted to tell the world of introductory

programming teachers about the tool, what mechanisms would you use to communicate with these

teachers? (Note: all introductory programming teachers ARE NOT hooked into listserves.)

7. Do you use any tool strictly for classroom demonstrations?

a. If so, why is this tool restricted to demonstrations?

8. Of the tools that you use, do you believe that you use the tool to its full potential?

a. If not, why not?

i. What prevents you from using the other aspects of the tool?

b. What percent of the tool's capabilities do you use?

9. Many of the tools used are used by teachers who learn the tool on the fly.

a. What are your thoughts on that?

b. What is the best medium to train in the use of a tool?

c. (leading) Would you participate in a Web training event for the tools that you use

i. as a student (participant)

ii. as a support person (presenter)

10. Would your teaching change is the tool were taken away?

a. if so, how?

11. (purposely leading) What tools do we need that aren't out there?

a. What should they be like?

12. Are there any tools that you consciously choose NOT to use?

a. What are they?

b. Have you tried them?

208

www.manaraa.com

c. Why don't you use them?

13. You've used many tools.... If you could choose only one tool to keep using, what would it be?

a. Why?

14. What did I forget to ask?

209

www.manaraa.com

210

Appendix D

Mapping of Developer’s Goals with Tool

Characteristics

Developer’s Goals Survey Questions

easy to use[200, 157] has an intuitive interface and has

reduces the complexity of details [50] a learning curve that is not too steep

students can start using the environment

on their own almost immediately[124]

provides object interaction supports an interactive environment

and inspection [124]

supports user interaction programming

via direct state manipulation [123]

engages students immediately [200] supports students active engagement

actively engage students in increasing in learning activities

knowledge and skills [49] improves first-time programmer’s

facilitate a more engaging, less experience

frustrating first programming encourages learning through discovery

experience[6]

provides students with a better supports an understanding of abstract

understanding of programming concepts

concepts[200] helps understanding of program execution

continued on next page

www.manaraa.com

211

continued from previous page

Developer’s Goals Survey Questions

increases student satisfaction and students enjoy using this tool

enthusiasm for programming[200] the initial experience of this tool

positively affects subsequent

programming courses

consistent visualization theme[157] supports consistent metaphor

we depend on metaphor to help us teach [21]

a kangaroo-like animal living on Santong

Island is programmed [200]

improves comprehensibility of software supports understanding of abstract

and provides support for understanding and complex concepts

objects representing data structures

[54, 109]

shows program structure[124] embodies ideas that support core

goal is to develop crucial programming programming concepts

skills[60] supports visual representation of general

programming concepts

allows students to instantiate objects supports understanding of OO concepts

and explore inheritance[50, 54, 157] supports visualization of OO concepts

supports objects first approach [50, 124]

provides clean illustration of

OO concepts [123]

introduces dynamic polymorphism [22]

guided by the prospect of an “objects-first”

approach [104]

provides a sense of program state[50] supports visualization of program state

provides direct state manipulation and object supports visualization of state changes

inspection [123]

continued on next page

www.manaraa.com

212

continued from previous page

Developer’s Goals Survey Questions

visualize the steps of the supports visualization of program

execution of the program [49, 107] code

no correlation between performance on the visual allows use at many levels of learning

questions and the preferred learning style [84] engages students of different ability

allows teachers to address students in locally levels

or personally relevant ways[96] allows students to work at levels

allows to vary the complexity and thus of their choice

the difficulty level of the material to

be learned [96]

environment supports the whole spectrum of

programmers - from complete novices to world class

researchers and real world applications[178]

possible to intersperse tool throughout can be used for the duration of

the semester [50] the course

design goal is to support programming

in the first year [124]

students gain an understanding of the includes graphical components

coordinate system and the spatial

relationship [49]

example problems have a graphical

user interface[124]

can be used for a wide variety of graphical

applications [123]

supports highly flexible scenarios [123] does not restrict scenarios

students write programs to control one restricts scenarios

or more robots in a rectangular

continued on next page

www.manaraa.com

213

continued from previous page

Developer’s Goals Survey Questions

world [21]

A Jeroo is a rare kangaroo-like animal

living on Santong Island [60]

easy to create an animation for telling incorporates storytelling

a story[6]

beneficial to explicitly address the allows for easy transition to a more

transition to the next environment in robust environment

discussions[124]

supports migration to other environments [123]

reduces the complexity of details [50] simplifies mechanics of programming

gently introduces students to the mechanics

of writing Java programs[7]

provides GUI components appropriate for

beginners [104]

permits very complex programs to be written sophisticated problems can be solved

with a very reduced Java subset [22]

a 3D interactive, animation, programming media rich programming environment

environment for building virtual worlds[6]

provide animated execution and code supports step by step evaluation of

highlighting [200] programming statements

enables the user to explore accessibility supports developing and testing

and visibility relationships by experimenting with individual components

any object on the workbench supports debugging

interactive object calls, interactive provides meaningful error messages

testing, and incremental development [28]

support development of debugging skills [50]

continued on next page

www.manaraa.com

214

continued from previous page

Developer’s Goals Survey Questions

error messages are sometimes cryptic[49]

includes a source level debugger [123]

highly visual feedback [49] provides immediate feedback

provide visual feedback of object state and

behaviour [123]

students do not develop a detailed addresses (or not) syntax issues

sense of syntax [50]

“no-typing” syntax-automated editor[49]

detect basic syntactic errors as soon as

possible [7]

information in tutorials provided by supports comments and documentation

developers [6, 28]

information in tutorials provided by supports user provided input

developers [6, 28] structures

information in tutorials provided by supports introduction of data

developers [6, 107, 24]

the Data Structure Identifier determines

what type of object and opens the appropriate

viewer

the group work aspect is not a provides natural platform for

coincidental side issue [124] encouraging group work

visualization is a superior was to visualize good tool for classroom demonstration

behavior [157]

introduces problem solving approaches that supports real world examples

can be used with computers [25]

draw on relevant examples and uses in their field

continued on next page

www.manaraa.com

215

continued from previous page

Developer’s Goals Survey Questions

and that emphasize computing concepts and skills

that go beyond just software development [89]

powerful enough that it scales to testing

of large systems[103]

provides a framework and environment [123] supports rigid framework where

lessons easily incorporated

reduce the attrition of our contributes to increase in enrollment

most at-risk majors [50] contributes to increase in student

increase in percentage of students retention in course

who continued on to CS2 [50] contributes to increase in student

We are enjoying dramatically higher retention in discipline

retention rates[89] students ready to continue studying CS

information on web site [6] technical support is provided

information on web site[6, 28, 77, 104] tutorials provided

information on web site[6, 24] instructor resources provided

information on web site[6, 28, 77, 24, 152] textbooks that incorporate this tool

are available

information on web site[6, 77, 152] a mechanism for community sharing

of materials is provided

information on web site[6, 28, 61] free, multi platform, and/or

[64, 77, 82, 107, 108] open source

[109, 103, 104, 24, 152, 166]

Table 45: Mapping of Developers’ Goals with Tool Characteristics from Survey Questions

www.manaraa.com

216

Appendix E

Themes

www.manaraa.com

Th
em

e
Ch

ar
ac
te
ri
st
ic

M
ic
ro

W
or
ld
s

Li
br
ar
ie
s

ID
Es

V
is
ua

liz
at
io
n

To
ol
s

To
ta
l

M
al
e

Fe
m
al
e

Co
lle

ge
H
S

U
se
rs

N
on

U
se
rs

Re
co
m
m
en
de
d
by

CS
ed
uc
at
or
s

62
.3

66
.7

63
.6

60
.8

54
70

.4
69

.3
57

.1
78

.4
Ta
sk

te
ch
no

lo
gy

fit
57

.1
54

.4
Co

m
pl
im

en
ts
te
ac
hi
ng

st
yl
e

52
.6

H
as

an
in
tu
iti
ve

in
te
rf
ac
e

63
.4

84
.6

62
.6

63
63
.3

57
.9

64
.8

64
.5

51
.5

H
as

a
le
ar
ni
ng

cu
rv
e
th
at

is
no

t
st
ee
p

74
.6

74
.8

10
0

74
.4

75
75
.9

77
.2

74
.4

76
.9

60
.6

To
ol
is
no

t
to
o
bi
g
an
d
no

t
to
o

re
st
ric
tiv

e
N
o
te
ch
ni
ca
ld
iff
ic
ul
tie

s
w
ith

in
st
al
la
tio

n

Si
m
pl
ifi
es

th
e
m
ec
ha
ni
cs

of
pr
og
ra
m
m
in
g

52
.9

55
.4

61
.5

53
.5

59
63
.2

53
.5

50
Su
pp

or
ts
an

in
te
ra
ct
iv
e

en
vi
ro
nm

en
t

85
.9

83
.3

65
.4

84
.6

71
.9

72
73

.4
71

.9
73

.6
74

60
.6

Su
pp

or
ts
st
ud

en
ts
'a
ct
iv
e

en
ga
ge
m
en
ti
n
le
ar
ni
ng

ac
tiv

iti
es

93
.8

10
0

60
.9

84
.6

72
.8

67
.7

80
65
.8

76
.7

73
70
.4

En
co
ur
ag
es

le
ar
ni
ng

th
ro
ug
h

di
sc
ov
er
y

79
.7

53
.3

58
.7

50
54

.2
52

63
Im

pr
ov
es

fir
st

tim
e
ex
pe
rie

nc
e

84
.5

10
0

72
84
.6

75
.4

75
75
.9

70
.2

78
.4

78
.1

60
.6

St
ud

en
ts
en
jo
y
us
in
g
th
is
to
ol

93
.1

10
0

67
.4

70
77
.2

70
.2

85
.9

64
.2

83
.5

77
.6

78
.3

In
tr
od

uc
es

pr
og
ra
m
m
in
g
in
a

m
or
e
en
jo
ya
bl
e
w
ay

89
.6

10
0

50
57

.1
65
.8

65
70
.4

66
.7

67
.6

63
78
.4

Th
e
in
iti
al
ex
pe
rie

nc
e
po

si
tiv

el
y

af
fe
ct
s
su
bs
eq
ue
nt

pr
og
ra
m
m
in
g

ex
pe
rie

nc
es

70
.7

10
0

60
.7

65
.3

66
63

.4
60

.4
67

.8
67

.8

co
nt
ri
bu

te
si
gn

ifi
ca
nt
ly
bu

t
ar
e
st
ill

in
ad

eq
ua

te
ly
su
pp

or
te
d

To
ol

Ch
oi
ce

M
an

ag
ea
bl
e

En
vi
ro
nm

en
t

A
ct
iv
e
Le
ar
ni
ng

G
oo

d
Fi
rs
t

Ex
pe

ri
en

ce co
nt
ri
bu

te
si
gn
ifi
ca
nt
ly

in
ad
eq

ua
te
ly
su
pp

or
te
d

217

www.manaraa.com

Th
em

e
Ch

ar
ac
te
ri
st
ic

M
ic
ro

W
or
ld
s

Li
br
ar
ie
s

ID
Es

V
is
ua

liz
at
io
n

To
ol
s

To
ta
l

M
al
e

Fe
m
al
e

Co
lle

ge
H
S

U
se
rs

N
on

U
se
rs

In
cl
ud

es
gr
ap
hi
ca
lc
om

po
ne
nt
s

84
.5

83
.3

54
.2

51
57

58
.4

52
.7

63
.6

Su
pp

or
ts
vi
su
al
iz
at
io
n
of

O
O

co
nc
ep
ts

58
.8

50
.5

50
.1

53
.9

53
.3

52
.2

Pr
ov
id
es

m
ul
tip

le
vi
ew

s
at

on
ce

54
.4

55
.4

53
.8

51
.6

Su
pp

or
ts
vi
su
al
iz
at
io
n
of

pr
og
ra
m

st
at
e

64
.7

53
.8

Su
pp

or
ts
vi
su
al
iz
at
io
n
of

st
at
e

ch
an
ge
s

54
.4

53
.8

Su
pp

or
ts
vi
su
al
iz
at
io
n
of

pr
og
ra
m

co
de

Pr
ov
id
es

a
m
ed
ia
ric
h

en
vi
ro
nm

en
t

Su
pp

or
ts
vi
su
al
re
pr
es
en
ta
tio

n
of

ge
ne
ra
lp
ro
gr
am

m
in
g

co
nc
ep
ts

Al
lo
w
s
fo
ru

se
at

m
an
y
le
ve
ls
of

le
ar
ni
ng

59
.2

83
.3

58
.9

76
.9

59
.1

63
59
.5

50
.9

65
.6

62
.7

Ca
n
be

us
ed

fo
rt
he

du
ra
tio

n
of

th
e
co
ur
se

83
.3

87
.5

90
.9

68
.4

80
.2

73
.6

76
.4

66
.4

74
At
tr
ac
ts
a
di
ve
rs
e
gr
ou

p
of

st
ud

en
ts

66
.2

En
ga
ge
s
st
ud

en
ts
of

di
ff
er
en
t

ab
ili
ty

le
ve
ls

81
.3

83
.3

51
.1

64
.4

60
.4

69
.3

55
.6

69
.2

67
.8

Al
lo
w
s
st
ud

en
ts
to

w
or
k
at

le
ve
ls

of
th
ei
r
ch
oi
ce

60
66
.7

50
.7

50
.8

co
nt
ri
bu

te
si
gn
ifi
ca
nt
ly

in
ad
eq

ua
te
ly
su
pp

or
te
d

co
nt
ri
bu

te
si
gn

ifi
ca
nt
ly
bu

t
ar
e
st
ill

in
ad

eq
ua

te
ly
su
pp

or
te
d

Fl
ex
ib
le

En
vi
ro
nm

en
t

V
is
ua

l
En

vi
ro
nm

en
t

218

www.manaraa.com

Th
em

e
Ch

ar
ac
te
ri
st
ic

M
ic
ro

W
or
ld
s

Li
br
ar
ie
s

ID
Es

V
is
ua

liz
at
io
n

To
ol
s

To
ta
l

M
al
e

Fe
m
al
e

Co
lle

ge
H
S

U
se
rs

N
on

U
se
rs

Al
lo
w
s
fo
ra

n
ea
sy

tr
an
si
tio

n
to

a
m
or
e
ro
bu

st
pr
og
ra
m
m
in
g

en
vi
ro
nm

en
t

G
oo

d
O
O
st
yl
e
is
N
O
T
di
st
or
te
d

by
pr
ag
m
at
ic
s
an
d
lim

ita
tio

ns
of

th
is
to
ol

Tr
an
si
tio

n
to

re
al
w
or
ld
is
N
O
T

di
ff
ic
ul
t

Af
te
ru

si
ng

th
is
to
ol
st
ud

en
ts
ar
e

re
ad
y
to

ex
te
nd

th
ei
rk

no
w
le
dg
e

by
co
nt
in
ui
ng

in
CS

cu
rr
ic
ul
a

65
.5

79
.8

72
.5

76
.6

66
.2

64
.2

76
.5

74
.8

56
.5

H
el
ps

w
ith

re
te
nt
io
n
in
co
ur
se

M
ec
ha
ni
sm

fo
rs
ha
rin

g
m
at
er
ia
ls

is
pr
ov
id
ed

by
au
th
or

or
co
m
m
un

ity
In
st
ru
ct
or

Re
so
ur
ce
s
ar
e

pr
ov
id
ed

by
au
th
or

or
co
m
m
un

ity
68
.3

10
0

52
.8

51
.3

Te
ch
ni
ca
ls
up

po
rt
is
pr
ov
id
ed

by
au
th
or
s
or

co
m
m
un

ity
68
.3

10
0

62
.1

63
67

.7
56

.3
57

.9
65

.6
62

.7
63
.3

To
ol
ca
n
be

us
ed

re
ga
rd
le
ss

of
te
xt
bo

ok
ch
os
en

81
10
0

90
.5

10
0

84
.5

84
.8

83
.8

93
80
.8

89
.3

60
Tu
to
ria

ls
or

Te
ac
he
rs
G
ui
de

pr
ov
id
ed

by
au
th
or
s
or

co
m
m
un

ity
66

.7
67
.4

63
.6

63
.5

65
.7

61
.3

66
.7

62
.4

63
.3

63
.3

M
at
er
ia
ls
ca
n
be

fo
un

d
th
ro
ug
h

on
lin
e
se
ar
ch

82
.5

66
.7

68
.4

70
.2

68
.7

72
.5

70
.2

71
.2

69
.3

73
.3

Te
xt
bo

ok
s
th
at

us
e
th
e
to
ol
ar
e

av
ai
la
bl
e

61
.9

83
.3

50
.5

54
.7

53
.5

55
52
.6

55
.2

53
.3

60

co
nt
ri
bu

te
si
gn
ifi
ca
nt
ly

in
ad
eq

ua
te
ly
su
pp

or
te
d

co
nt
ri
bu

te
si
gn

ifi
ca
nt
ly
bu

t
ar
e
st
ill

in
ad

eq
ua

te
ly
su
pp

or
te
d

To
ol

Re
so
ur
ce
s

Su
bs
eq

ue
nt

Co
ur
se
s

219

www.manaraa.com

Th
em

e
Ch

ar
ac
te
ri
st
ic

M
ic
ro

W
or
ld
s

Li
br
ar
ie
s

ID
Es

V
is
ua

liz
at
io
n

To
ol
s

To
ta
l

M
al
e

Fe
m
al
e

Co
lle

ge
H
S

U
se
rs

N
on

U
se
rs

Su
pp

or
ts
st
ep

by
st
ep

ev
al
ua
tio

n
of

si
ng
le
pr
og
ra
m
m
in
g

st
at
em

en
ts

60
.4

84
.6

50
.3

56
.8

53
.7

50
.3

Su
pp

or
ts
in
cr
em

en
ta
l

de
ve
lo
pm

en
t

Su
pp

or
ts
co
m
m
en
ts
an
d

do
cu
m
en
ta
tio

n
70

.3
53

.8
54

.1
56

.8
51

.4
57

.4
53

.8
59

.2
G
iv
es

im
m
ed
ia
te

fe
ed
ba
ck

ab
ou

t
er
ro
rs

57
.4

53
.8

50
.3

51
.6

50
.4

52
.2

Su
pp

or
ts
ev
en
t
dr
iv
en

pr
og
ra
m
m
in
g

50
.8

Su
pp

or
ts
te
st
in
g
of

in
di
vi
du

al
co
m
po

ne
nt
s

55
.4

51
.9

60
68
.5

52
.9

Su
pp

or
ts
de
bu

gg
in
g
in
an

ea
sy

w
ay

74
.3

84
.6

53
.6

56
.8

61
.1

50
.4

57
.3

Pr
ev
en
ts
sy
nt
ax

er
ro
rs

52
.5

Pr
ov
id
es

m
ea
ni
ng
fu
le
rr
or

m
es
sa
ge
s
(n
o
cr
yp
tic

er
ro
r

m
es
sa
ge
s)

53
su
pp

or
ts
in
tr
od

uc
tio

n
of

da
ta

st
ru
ct
ur
es

Ea
se
s
an
d
pr
om

ot
es

th
e
te
ac
hi
ng

of
pr
og
ra
m
m
in
g

81
83

.3
68

.5
70

73
.1

72
.3

73
.2

67
.9

75
.7

76
.2

52
.2

G
oo

d
to
ol
fo
rc
la
ss

de
m
on

st
ra
tio

ns
91

.9
83

.3
77
.1

90
.9

80
.8

80
.2

80
.6

72
.7

84
.5

82
73

.1

co
nt
ri
bu

te
si
gn
ifi
ca
nt
ly

in
ad
eq

ua
te
ly
su
pp

or
te
d

co
nt
ri
bu

te
si
gn

ifi
ca
nt
ly
bu

t
ar
e
st
ill

in
ad

eq
ua

te
ly
su
pp

or
te
d

Pr
og

ra
m
m
in
g

Te
ac
hi
ng

220

www.manaraa.com

Th
em

e
Ch

ar
ac
te
ri
st
ic

M
ic
ro

W
or
ld
s

Li
br
ar
ie
s

ID
Es

V
is
ua

liz
at
io
n

To
ol
s

To
ta
l

M
al
e

Fe
m
al
e

Co
lle

ge
H
S

U
se
rs

N
on

U
se
rs

Ea
se
s
an
d
pr
om

ot
es

th
e
le
ar
ni
ng

of
pr
og
ra
m
m
in
g

79
.3

10
0

76
.4

90
76
.6

71
.3

83
.1

69
.8

80
81
.8

H
el
ps

un
de
rs
ta
nd

in
g
of

pr
og
ra
m

ex
ec
ut
io
n

65
.5

66
.7

57
.6

60
60

.6
58

.3
62

.7
57

.4
61

.7
63

.8
Su
pp

or
ts
th
e
un

de
rs
ta
nd

in
g
of

ab
st
ra
ct
an
d
co
m
pl
ex

co
nc
ep
ts

64
.1

66
.7

52
.2

54
.4

56
.3

50
.7

50
56

.7
55
.9

Su
pp

or
ts
ab
st
ra
ct
io
n

Em
bo

di
es

id
ea
s
th
at

su
pp

or
t

co
re

pr
og
ra
m
m
in
g
co
nc
ep
ts

69
83
.3

57
.1

60
55
.7

54
.4

60
.8

59
.2

Su
pp

or
ts
a
co
nc
ep
ts
fir
st

ap
pr
oa
ch

67
.6

Su
pp

or
ts
co
ns
is
te
nt

m
et
ap
ho

r
59

.2

co
nt
ri
bu

te
si
gn
ifi
ca
nt
ly

in
ad
eq

ua
te
ly
su
pp

or
te
d

co
nt
ri
bu

te
si
gn

ifi
ca
nt
ly
bu

t
ar
e
st
ill

in
ad

eq
ua

te
ly
su
pp

or
te
d

Le
ar
ni
ng

221

www.manaraa.com

222

References

[1] Accentance, Inc. Website. http://www.accentance.com/.

[2] ACM SIGCSE Committee. Engaging computer science education. In SIGCSE ’09:

Proceedings of the 40th SIGCSE technical symposium on Computer science

education, New York, NY, USA, 2009. ACM.

[3] Joel Adams and Jeremy Frens. Object centered design for Java: Teaching OOD in

CS-1. SIGCSE Bull., 35(1):273–277, 2003.

[4] Mohammed Al-Bow, Debra Austin, Jeffrey Edgington, Rafael Fajardo, Joshua

Fishburn, Carlos Lara, Scott Leutenegger, and Susan Meyer. Using Greenfoot and

games to teach rising 9th and 10th grade novice programmers. In Sandbox ’08:

Proceedings of the 2008 ACM SIGGRAPH symposium on Video games, pages 55–59,

New York, NY, USA, 2008. ACM.

[5] Kirsti Ala-Mutka. Problems in learning and teaching programming - a literature

study for developing visualizations in the Codewitz-Minerva project.

http://www.cs.tut.fi/~edge/literature_study.pdf.

[6] Alice Website, cited April 2009. http://www.Alice.org.

[7] Eric Allen, Robert Cartwright, and Brian Stoler. DrJava: a lightweight pedagogic

environment for Java. SIGCSE Bull., 34(1):137–141, 2002.

[8] James Allert. Learning style and factors contributing to success in an introductory

computer science course. In ICALT ’04: Proceedings of the IEEE International

Conference on Advanced Learning Technologies, pages 385–389, Washington, DC,

USA, 2004. IEEE Computer Society.

www.manaraa.com

223

[9] Dorine Andrews, Blair Nonnecke, and Jennifer Preece. Conducting Research on the

Internet: Online survey design, development, and implementation guidelines.

International Journal of Human-Computer Interaction, 16(2):185–210, 2003.

[10] Karen Anewalt. Making CS0 fun: an active learning approach using toys, games

and Alice. J. Comput. Small Coll., 23(3):98–105, 2008.

[11] AP Computer Science Electonic Discussion Group.

http://lyris.collegeboard.com/read/?forum=ap-compsci.

[12] Owen Astrachan and Susan H. Rodger. Animation, visualization, and interaction in

CS 1 assignments. In SIGCSE ’98: Proceedings of the twenty-ninth SIGCSE

technical symposium on Computer science education, pages 317–321, New York, NY,

USA, 1998. ACM.

[13] Frances Bailie, Glenn Blank, Keitha Murray, and Rathika Rajaravivarma. Java

visualization using BlueJ. J. Comput. Small Coll., 18(3):175–176, 2003.

[14] Jessica D. Bayliss. Using games in introductory courses: tips from the trenches. In

SIGCSE ’09: Proceedings of the 40th ACM technical symposium on Computer

science education, pages 337–341, New York, NY, USA, 2009. ACM.

[15] Theresa Beaubouef and John Mason. Why the high attrition rate for computer

science students: some thoughts and observations. SIGCSE Bull., 37(2):103–106,

2005.

[16] Byron Weber Becker. Teaching CS1 with Karel the Robot in Java. SIGCSE Bull.,

33(1):50–54, 2001.

[17] Henry Jay Becker and Margaret M. Riel. Teacher professionalism and the emergence

of constructuvust-compatible pedagogies, 1999. Revised version of a paper presented

at the 1999 meeting of the American Educational Research Association, Montreal.

www.manaraa.com

224

[18] Mordechai Ben-Ari. Constructivism in computer science education. In SIGCSE ’98:

Proceedings of the twenty-ninth SIGCSE technical symposium on Computer science

education, pages 257–261, New York, NY, USA, 1998. ACM.

[19] Jens Bennedsen and Michael E. Caspersen. An investigation of potential success

factors for an introductory model-driven programming course. In ICER 05:

Proceedings of the 2005 international workshop on Computing education research,

2005.

[20] Jens Bennedsen and Michael E. Caspersen. Abstraction ability as an indicator of

success for learning object-oriented programming? ACM SIGCSE Bulletin,

38(2):39–43, 2006.

[21] Joe Bergin. Karel Universe Drag & Drop Editor. In ITICSE ’06: Proceedings of the

11th annual SIGCSE conference on Innovation and technology in computer science

education, pages 307–307, New York, NY, USA, 2006. ACM.

[22] Joe Bergin, Kim Bruce, and Michael Kölling. Objects-early tools: a demonstration.

SIGCSE Bull., 37(1):390–391, 2005.

[23] Joe Bergin, Raymond Lister, Barbara Boucher Owens, and Myles McNally. The first

programming course: ideas to end the enrollment decline. SIGCSE Bull.,

38(3):301–302, 2006.

[24] Joe Bergin, Mark Stehlik, Jim Roberts, and Richard Pattis. Karel J. Robot website,

cited April 2009. http:

//csis.pace.edu/~bergin/KarelJava2ed/Karel\%2B\%2BJavaEdition.html.

[25] Joseph Bergin, Mark Stehlik, Jim Roberts, and Rich Pattis. Karel J Robot: A

Gentle Introduction to the Art of Object-Oriented Programming in Java. Dream

Songs Press, 2005.

www.manaraa.com

225

[26] Susan Bergin and Ronan Reilly. Programming: Factors that influence success. In

Proceedings of the 32nd SIGCSE Technical Symposium on Computer Science

Education, 2005.

[27] Betsy Bizot. US CS new majors, enrollment both rise in 2007-2008. Computing

Research News, 21(2), 2009.

[28] BlueJ, cited April 2009. http://www.bluej.org/.

[29] Marcella Bombardieri. In computer science, a growing gender gap: Women shunning

a field once seen as welcoming. Boston Globe, 18 December 2005, 2005.

[30] Tom Briggs. Techniques for active learning in CS courses. J. Comput. Small Coll.,

21(2):156–165, 2005.

[31] Kim Bruce, Andrea Danyluk, and Tom Murtagh. Java: An Eventful Approach. J.

Comput. Small Coll., 19(5):64–65, 2004.

[32] Kim B. Bruce. Controversy on how to teach CS 1: a discussion on the

SIGCSE-members mailing list. SIGCSE Bull., 37(2):111–117, 2005.

[33] Kim B. Bruce, Andrea Danyluk, and Thomas Murtagh. A library to support a

graphics-based object-first approach to CS 1. In SIGCSE ’01: Proceedings of the

thirty-second SIGCSE technical symposium on Computer Science Education, pages

6–10, New York, NY, USA, 2001. ACM.

[34] Pat Byrne and Gerry Lyons. The effect of student attributes on success in

programming. SIGCSE Bull., 33(3):49–52, 2001.

[35] Wayne J. Camara and Roger Millsap. Using the PSAT/NMSQT and course grades

in predicting success in the Advanced Placement Program. In College Board Report

No. 98-4. The College Board, 1998.

[36] Yan Cao, Zhou Fang, Yanli Yang, and Zhong Li. Cutter Database Management

System Development on NetBeans 5.0 Platform. First International Workshop on

Database Technology and Applications, 2009, pages 41–44, 2009.

www.manaraa.com

226

[37] Angela Carbone, Linda Mannila, and Sue Fitzgerald. Computer science and IT

teachers’ conceptions of successful and unsuccessful teaching: A phenomenographic

study. Computer Science Education, 17(4):275–299, 2007.

[38] Martin C. Carlisle, Terry A. Wilson, Jeffrey W. Humphries, and Steven M. Hadfield.

RAPTOR: a visual programming environment for teaching algorithmic problem

solving. In SIGCSE ’05: Proceedings of the 36th SIGCSE technical symposium on

Computer science education, pages 176–180, New York, NY, USA, 2005. ACM.

[39] Michael E. Caspersen. Educating Novices in The Skills of Programming. PhD thesis,

University of Aarhus, 2007.

[40] A. T. Chamillard. Introductory game creation: no programming required. In

SIGCSE ’06: Proceedings of the 37th SIGCSE technical symposium on Computer

science education, pages 515–519, New York, NY, USA, 2006. ACM.

[41] Zhixiong Chen and Delia Marx. Experiences with Eclipse IDE in programming

courses. J. Comput. Small Coll., 21(2):104–112, 2005.

[42] Arthur Chickering and Stephen C. Ehrmann. Seven principles of good practice in

undergraduate education. International Journal of Human-Computer Interaction,

39:3–7, 1987.

[43] Hyunyi Cho and Robert Larose. Privacy issues in Internet surveys. Social Science

Computer Review, 17(4):421, 1999.

[44] Donald R. Clark. Kolb’s Learning Styles and Experimental Learning Model, cited

July 2009. http://www.nwlink.com/~donclark/hrd/styles/kolb.html.

[45] Daniel C. Cliburn. The effectiveness of games as assignments in an introductory

programming course. In Proceedings of the 36th ASEE/IEEE Frontiers in Education

Conference, San Diego, CA, USA, 2006.

[46] Louis Cohen, Lawrence Manion, and Keith Morrison. Research Methods in

Education. Routledge, New York,NY, USA, 2007.

www.manaraa.com

227

[47] J. McGrath Cohoon and Lih-Yuan Chen. Migrating out of computer science.

Computing Research News, 15(2), 2003.

[48] Commonwealth of Learning. Manual for Educational Media Researchers: Knowing

your Audience, page Chapter 13. The Commonwealth of Learning, Commonwealth

Educational Media Centre of Asia, cited December 2009.

[49] Stephen Cooper, Wanda Dann, and Randy Pausch. Alice: a 3-D tool for

introductory programming concepts. In CCSC ’00: Proceedings of the fifth annual

CCSC northeastern conference on The journal of computing in small colleges, pages

107–116, , USA, 2000. Consortium for Computing Sciences in Colleges.

[50] Stephen Cooper, Wanda Dann, and Randy Pausch. Teaching objects-first in

introductory computer science. In SIGCSE ’03: Proceedings of the 34th SIGCSE

technical symposium on Computer science education, pages 191–195, New York, NY,

USA, 2003. ACM.

[51] John W. Cresswell, William E. Hanson, Vicki L Clark Plano, and Alejandro

Morales. Qualitative research designs: Selection and implementation. The

Counseling Psychologist, 35:236–264, 2007.

[52] James H. Cross, II. jGRASP: teaching hard concepts with intuitive visualizations:

conference workshop. J. Comput. Small Coll., 24(1):254–256, 2008.

[53] James H. Cross, II and T. Dean Hendrix. jGRASP: an Integrated Development

Environment with visualizations for teaching Java in CS1, CS2, and beyond. J.

Comput. Small Coll., 23(3):169–171, 2008.

[54] James H. Cross, II, T. Dean Hendrix, Jhilmil Jain, and Larry A. Barowski.

Dynamic object viewers for data structures. In SIGCSE ’07: Proceedings of the 38th

SIGCSE technical symposium on Computer science education, pages 4–8, New York,

NY, USA, 2007. ACM.

www.manaraa.com

228

[55] CSTA. Ensuring exemplary teaching in an essential discipline: Addressing the crisis

in computer science teacher certification. Technical report, CSTA, 2008.

[56] CSTA. CS & IT Symposia, cited in December 2009. http:

//www.csta.acm.org/ProfessionalDevelopment/sub/CSITSymposiaSite.html.

[57] Perry Davis, Kimberly Yonce, and Caroline Eastman. The impact of using robotics

on student program complexity in CS1 and CS2. Work conducted during a Research

Experience for Undergraduates Summer 2007 program supported by NSF grant

0649105.

[58] Norman K. Denzin and Yvonna S. Lincoln. Handbook of Qualitative Research. Sage

publications, Newbury Park, CA, 2nd edition, 2000.

[59] Dwight Deugo. Using Eclipse in the classroom. In ITiCSE ’08: Proceedings of the

13th annual conference on Innovation and technology in computer science education,

pages 322–322, New York, NY, USA, 2008. ACM.

[60] Brian Dorn and Dean Sanders. Using Jeroo to introduce object-oriented

programming. In FIE ’03: Proceedings of the 33rd annual Frontiers in Education

Conference, 2003.

[61] DrJava, cited April 2009. http://www.drjava.org.

[62] DrScheme, cited December 2009. http://www.plt-scheme.org/.

[63] Clive L. Dym, William H. Wood, and Michael J. Scott. Rank ordering engineering

designs: pairwise comparison charts and Borda counts. Research in Engineering

Design, 13(4):236–242, 2002.

[64] Eclipse, cited April 2009. http://www.eclipse.org/.

[65] Barry Fagin and Laurence Merkle. Measuring the effectiveness of robots in teaching

computer science. SIGCSE Bull., 35(1):307–311, 2003.

www.manaraa.com

229

[66] Barry S. Fagin and Laurence Merkle. Quantitative analysis of the effects of robots on

introductory computer science education. J. Educ. Resour. Comput., 2(4):2, 2002.

[67] Richard M. Fedler. Reaching the second tier: Learning and teaching styles in college

education. Journal of College Science Teaching, 23(5):286–290, 1993.

[68] James B. Fenwick, Jr., Cindy Norris, Frank E. Barry, Josh Rountree, Cole J. Spicer,

and Scott D. Cheek. Another look at the behaviors of novice programmers. In

SIGCSE ’09: Proceedings of the 40th ACM technical symposium on Computer

science education, pages 296–300, New York, NY, USA, 2009. ACM.

[69] Stefan Feyock and Thomas Ford. Individual learning styles and computer science

education. In ACM 76: Proceedings of the annual conference, pages 130–134, New

York, NY, USA, 1976. ACM.

[70] Sally Fincher and Marian Petre, editors. Computer Science Education Research,

chapter 3. Routledge, 2004.

[71] Kasper Fisker, Davin McCall, Michael Kölling, and Bruce Quig. Group work

support for the BlueJ IDE. In ITiCSE ’08: Proceedings of the 13th annual

conference on Innovation and technology in computer science education, pages

163–168, New York, NY, USA, 2008. ACM.

[72] Consortium for Computing Sciences in Colleges. CCSC website, cited in December

2009. http://www.ccsc.org/.

[73] International Society for Technology in Education. National Educational Computing

Conference, cited in December 2009.

http://center.uoregon.edu/ISTE/NECC2009/program/.

[74] Andrea Forte and Mark Guzdial. Computers for communication, not calculation:

Media as a motivation and context for learning. Hawaii International Conference on

System Sciences, 4:40096a, 2004.

www.manaraa.com

230

[75] Carol Frieze. The Critical Role of Culture and Environment as Determinants of

Women’s Participation in Computer Science. PhD thesis, Carnegie Mellon

University, 2007.

[76] Vashti C. Galpin, Ian D. Sanders, and Pei-yu Chen. Learning styles and personality

types of computer science students at a South African University. In ITiCSE ’07:

Proceedings of the 12th annual SIGCSE conference on Innovation and technology in

computer science education, pages 201–205, New York, NY, USA, 2007. ACM.

[77] Game Maker, cited April 2009. http://www.yoyogames.com/gamemaker/.

[78] Dan Garcia. Technology that Educators of Computing Hail.

http://www.cs.berkeley.edu/~ddgarcia/papers/SIGCSE2010TECHBOF.pdf.

[79] Ray Giguette. Pre-games: games designed to introduce CS1 and CS2 programming

assignments. SIGCSE Bull., 35(1):288–292, 2003.

[80] Annagret Goold and Russell Rimmer. Factors affecting performance in first-year

computing. SIGCSE Bull., 32(2):39–43, 2000.

[81] Gina Green. Perceived control of software developers and its impact on the

successful diffusion of information technology, 1999. Special Report:

CMU/SEI-98-SR-013.

[82] Greenfoot, cited April 2009. http://www.greenfoot.org/index.html.

[83] Gridworld, cited April 2009. http://apcentral.collegeboard.com/apc/public/

courses/teachers_corner/151155.html.

[84] Scott Grissom, Myles F. McNally, and Tom Naps. Algorithm visualization in CS

education: comparing levels of student engagement. In SoftVis ’03: Proceedings of

the 2003 ACM symposium on Software visualization, pages 87–94, New York, NY,

USA, 2003. ACM.

www.manaraa.com

231

[85] Paul Gross and Kris Powers. Evaluating assessments of novice programming

environments. In ICER ’05: Proceedings of the first international workshop on

Computing education research, pages 99–110, New York, NY, USA, 2005. ACM.

[86] Paul Gross and Kris Powers. Work in progress - a meta-study of software tools for

introductory programming. In Frontiers in Education, 2005. FIE ’05. Proceedings

35th Annual Conference, pages S1E–12, Indianopolis, IN, USA, 2005.

[87] Mario Guimaraes and Meg Murray. An exploratory overview of teaching computer

game development. J. Comput. Small Coll., 24(1):144–149, 2008.

[88] Mark Guzdial. A media computation course for non-majors. In ITiCSE ’03:

Proceedings of the 8th annual conference on Innovation and technology in computer

science education, pages 104–108, New York, NY, USA, 2003. ACM.

[89] Mark Guzdial. Computing for everyone: Improving global competitiveness and

understanding of the world. A White Paper for ICER Workshop, 2006.

[90] Mark Guzdial. Education: Teaching computing to everyone. Commun. ACM,

52(5):31–33, 2009.

[91] Mark Guzdial and Elliot Soloway. Teaching the Nintendo generation to program.

Commun. ACM, 45(4):17–21, 2002.

[92] Kelsey Van Haaster and Dianne Hagan. Teaching and learning with BlueJ: an

evaluation of a pedagogical tool. In Journal of Issues in Informing Science and

Information Technology, pages 455–470, Santa ROsa, CA, 2004. IISIT.

[93] Brian Hanks and Matt Brandt. Successful and unsuccessful problem solving

approaches of novice programmers. In SIGCSE ’09: Proceedings of the 40th ACM

technical symposium on Computer science education, pages 24–28, New York, NY,

USA, 2009. ACM.

[94] Robert W. Hasker. An introductory programming environment for LEGO

Mindstorms Robots, cited January 2009.

www.manaraa.com

232

[95] Jesse M. Heines and Martin J. Schedlbauer. Teaching object-oriented concepts

through GUI programming. In ECOOP ’07: Proceedings of the 11th Workshop on

Pedagogies and Tools for the Teaching and Learning of Objects Oriented Concepts,

2007.

[96] Poul Henriksen and Michael Kölling. Greenfoot: combining object visualisation with

interaction. In OOPSLA ’04: Companion to the 19th annual ACM SIGPLAN

conference on Object-oriented programming systems, languages, and applications,

pages 73–82, New York, NY, USA, 2004. ACM.

[97] Hi-tech outsourcing services. http://www.hitechos.com/.

[98] Elizabeth V. Howard, Donna Evans, Jill Courte, , and Cathy Bishop-Clark. A

qualitative look at Alice and pair-programming. In In The Proceedings of ISECON

2006, volume 23, Dallas, TX, USA, 2006.

[99] Timothy Huang. Strategy game programming projects. In CCSC ’01: Proceedings

of the sixth annual CCSC Northeastern Conference on The Journal of Computing in

Small Colleges, pages 205–213, , USA, 2001. Consortium for Computing Sciences in

Colleges.

[100] Christopher D. Hundhausen, Saraha A. Douglas, and John T. Staskoz. A

meta-study of algorithm visualization effectiveness. Journal of Visual Languages

and Computing, 13:259–290, 2002.

[101] Letizia Jaccheri and Thomas Osterlie. Open source software: A source of

possibilities for software engineering education and empirical software engineering.

First International Workshop on Emerging Trends in FLOSS Research and

Development (FLOSS’07): ICSE Workshops 2007, page 5, 2007.

[102] Andrea James. Computer science classes gets their groove back. Seattle

Post-Intelligencer, 26 March 2009, 2009.

www.manaraa.com

233

[103] Java Power Tools, cited July 2009.

http://www.ccs.neu.edu/jpt/jpt_2_4/index.htm.

[104] Java Task Force Library, cited April 2009. http://jtf.acm.org/.

[105] Javabat: Java Practice, cited April 2009. http://www.javabat.com/.

[106] JCreator, cited April 2009. http://www.jcreator.com/.

[107] Jeliot 3, cited April 2009. http://cs.joensuu.fi/~jeliot/.

[108] Jeroo website, cited April 2009. http://home.cc.gatech.edu/dorn/jeroo.

[109] jGRASP, cited April 2009. http://www.jgrasp.org/index.html.

[110] Larry J. Stephens John Konvalina, Stanley A. Wileman. Math proficiency: a key to

success for computer science students. Communications of the ACM, 26(5):377–382,

1998.

[111] Burke Johnson and Larry Christensen. Educational Research: Quantitative,

Qualitative, and Mixed Approaches, 2nd ed. Pearson Education, Inc., 2004.

[112] Junit Testing Framework, cited April 2009. http://www.junit.org/home.

[113] Giuseppe Jurman, Stefano Merler, Annalisa Barla, Silvano Paoli, Antonio Galea,

and Cesare Furlanello. Algebraic stability indicators for ranked lists in molecular

profiling. Bioinformatics, 24(4):258–264, 2008.

[114] Colleen Kehoe, John Stasko, and Ashley Taylor. A survey of successful evaluations

of program visualization and algorithm animation systems. International Journal of

Human-Computer Studies, 54(2):265–284, 2001.

[115] Caitlin Kelleher. Motivating Programming: Using storytelling to make computer

programming attractive to middle school girls. PhD thesis, Carnegie Mellon

Universoty, 2006.

www.manaraa.com

234

[116] Caitlin Kelleher and Randy Pausch. Lowering the barriers to programming: A

taxonomy of programming environments and languages for novice programmers.

ACM Comput. Surv., 37(2):83–137, 2005.

[117] Caitlin Kelleher and Randy Pausch. Using storytelling to motivate programming.

Commun. ACM, 50(7):58–64, 2007.

[118] Pivi Kinnunen and Lauri Malmi. Why students drop out CS1 course? In Proceedings

of the 2006 international workshop on Computing education research, 2006.

[119] Changing Minds, Kolb’s Learning Styles, cited July 2009.

http://changingminds.org/explanations/learning/kolb_learning.htm.

[120] Alice Y. Kolb and David A. Kolb. The Kolb Learning Style Inventory-Version 3.1,

2005 Technical Specifications, 2005.

[121] Alexander Koller and Geert-Jan M. Kruijff. Talking robots with LEGO

Mindstorms. In COLING ’04: Proceedings of the 20th international conference on

Computational Linguistics, page 336, Morristown, NJ, USA, 2004. Association for

Computational Linguistics.

[122] Svetlana Kouznetsova. Using BlueJ and blackjack to teach object-oriented design

concepts in CS1. J. Comput. Small Coll., 22(4):49–55, 2007.

[123] Michael Külling and Poul Henriksen. Game programming in introductory courses

with direct state manipulation. SIGCSE Bull., 37(3):59–63, 2005.

[124] Michael Külling, Bruce Quig, Andrew Patterson, and John Rosenberg. The BlueJ

system and its pedagogy. Computer Science Education, 13(4):249–268, 2003.

[125] Stan Kurkovsky. Engaging students through mobile game development. SIGCSE

Bull., 41(1):44–48, 2009.

[126] Essi Lahtinen, Hannu-Matti Järvinen, and Suvi Melakoski-Vistbacka. Targeting

program visualizations. In ITiCSE ’07: Proceedings of the 12th annual SIGCSE

www.manaraa.com

235

conference on Innovation and technology in computer science education, pages

256–260, New York, NY, USA, 2007. ACM.

[127] Catherine Lang, Judy McKay, and Sue Lewis. Seven factors that influence ICT

student achievement. ACM SIGCSE Bulletin, 39(3):221–225, 2007.

[128] Larry Latour. Microworlds, cited April 2009.

http://www.umcs.maine.edu/~larry/microworlds/microworld.html.

[129] Matti Lattu, Jorma Tarhio, and Veijo Meisalo. How a visualization tool can be used

- evaluating a tool in a research and development project. In Proceedings of the 12th

Workshop of the Psychology of Programming Interest Group, 2000.

[130] Pamela B. Lawhead, Michaele E. Duncan, Constance G. Bland, Michael Goldweber,

Madeleine Schep, David J. Barnes, and Ralph G. Hollingsworth. A road map for

teaching introductory programming using LEGO c©Mindstorms robots. In

ITiCSE-WGR ’02: Working group reports from ITiCSE on Innovation and

technology in computer science education, pages 191–201, New York, NY, USA,

2002. ACM.

[131] Lucas Layman, Travis Cornwell, Laurie Williams, and Jason Osborne. Personality

profiles and learning styles of advanced undergraduate computer science students.

ftp://ftp.ncsu.edu/pub/unity/lockers/ftp/csc_anon/tech/2005/

TR-2005-40.pdf.

[132] R. Mark Leeman and David H. Glass. Teaching Java with robots and artificial life.

Innovation in Teaching And Learning in Information and Computer Sciences,

6(4):24–34, 2007.

[133] Scott Leutenegger and Jeffrey Edgington. A games first approach to teaching

introductory programming. In SIGCSE ’07: Proceedings of the 38th SIGCSE

technical symposium on Computer science education, pages 115–118, New York, NY,

USA, 2007. ACM.

www.manaraa.com

236

[134] Eugene Levner, David Alcaide, and Joaquin Sicilia. Multi-attribute Text

Classification Using the Fuzzy Borda Method and Semantic Grades. In WILF ’07:

Proceedings of the 7th international workshop on Fuzzy Logic and Applications,

pages 422–429, Berlin, Heidelberg, 2007. Springer-Verlag.

[135] Ronit Ben-Bassat Levy and Mordechai Ben-Ari. We work so hard and they don’t

use it: Acceptance of software tools by teachers. In ITiCSE ’07: Proceedings of the

12th annual SIGCSE conference on Innovation and technology in computer science

education, pages 246–250, New York, NY, USA, 2007. ACM.

[136] Ronit Ben-Bassat Levy, Mordechai Ben-Ari, and Pekka A. Uronen. The Jeliot 2000

program animation system. Comput. Educ., 40(1):1–15, 2003.

[137] Gary Lewandowski, Alicia Gutschow, Robert McCartney, Kate Sanders, and

Dermot Shinners-Kennedy. What novice programmers don’t know. In ICER ’05:

Proceedings of the first international workshop on Computing education research,

pages 1–12, New York, NY, USA, 2005. ACM.

[138] Raymond Lister. Teaching Java first: experiments with a pigs-early pedagogy. In

ACE ’04: Proceedings of the sixth conference on Australasian computing education,

pages 177–183, Darlinghurst, Australia, Australia, 2004. Australian Computer

Society, Inc.

[139] Raymond Lister. Grand Challenges. ACM SIGCSE Bulletin, 37(2):14–15, 2005.

[140] Raymond Lister, Anders Berglund, Ilona Box, Chris Cope, Arnold Pears, Chris

Avram, Mat Bower, Angela Carbone, Bill Davey, Michael de Raadt, Bernard Doyle,

Sue Fitzgerald, Linda Mannila, Cat Kutay, Mia Peltomäki, Judy Sheard, Simon,

Ken Sutton, Des Traynor, Jodi Tutty, and Anne Venables. Differing ways that

computing academics understand teaching. In ACE ’07: Proceedings of the ninth

Australasian conference on Computing education, pages 97–106, Darlinghurst,

Australia, Australia, 2007. Australian Computer Society, Inc.

www.manaraa.com

237

[141] Raymond Lister, Anders Berglund, Tony Clear, Joe Bergin, Kathy Garvin-Doxas,

Brian Hanks, Lew Hitchner, Andrew Luxton-Reilly, Kate Sanders, Carsten Schulte,

and Jacqueline L. Whalley. Research perspectives on the objects-early. In

ITiCSE-WGR ’06: Working group reports on ITiCSE on Innovation and technology

in computer science education, pages 146–165, New York, NY, USA, 2006. ACM.

[142] Yudong Liu. How algorithm animations aid learning in computer algorithm

education - a literature review of algorithm animations in computer science

education. http://www.sfu.ca/~yudongl/_private/LiteratureReview-v3.pdf.

[143] Torben Lorenzen and Ward Heilman. CS1 and CS2: Write computer games in Java!

SIGCSE Bull., 34(4):99–100, 2002.

[144] Linxiao Ma, John Ferguson, Marc Roper, and Murray Wood. Improving the

viability of mental models held by novice programmers. In ECOOP ’07: Proceedings

of the 11th Workshop on Pedagogies and Tools for the Teaching and Learning of

Objects Oriented Concepts, 2007.

[145] David J. Malan and Henry H. Leitner. Scratch for budding computer scientists. In

SIGCSE ’07: Proceedings of the 38th SIGCSE technical symposium on Computer

science education, pages 223–227, New York, NY, USA, 2007. ACM.

[146] Mary Lynn Manns. An Investigation into Factors Affecting the Adoption and

Diffusion of Software Patterns in Industry. PhD thesis, De Montfort University,

2002.

[147] Jane Margolis and Allan Fisher. Unlocking the Clubhouse: Women in Computing.

MIT Press, Cambridge, MA, 2003.

[148] John Markoff. Computer science programs make a comeback in enrollment. NY

Times, 16 March 2009, 2009.

[149] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan,

Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz

www.manaraa.com

238

Wilusz. A multi-national, multi-institutional study of assessment of programming

skills of first-year CS students. In ITiCSE-WGR ’01: Working group reports from

ITiCSE on Innovation and technology in computer science education, pages 125–180,

New York, NY, USA, 2001. ACM.

[150] Andrew McGettrick, Robert Boyle, Roland Ibbett, John Lloyd, Gillian Lovegrove,

and Keith Mander. Grand Challenges in Computing: Education. Technical report,

British Computer Society, Swindon, Wiltshire, SN1 1HJ, 2004.

[151] Jerry Mead, Simon Gray, John Hamer, Richard James, Juha Sorva, Caroline St.

Clair, and Lynda Thomas. A cognitive approach to identifying measurable

milestones for programming skill acquisition. ITiCSE-WGR ’06:Working group

reports on ITiCSE on Innovation and technology in computer science education,

2006.

[152] Mediacomp, cited April 2009. http://coweb.cc.gatech.edu/mediaComp-plan/26.

[153] Andrew Mertz, William Slough, and Nancy Van Cleave. The ACM Java libraries:

Post-conference Workshop. J. Comput. Small Coll., 24(1):127–128, 2008.

[154] Andrew Mertz, William Slough, and Nancy Van Cleave. Using the ACM Java

libraries in CS 1. J. Comput. Small Coll., 24(1):16–26, 2008.

[155] R. Mark Meyer and Debra T. Burhans. Robotran: A programming environment for

novices using LEGO Mindstorms robots. In Proceedings of the twenty-first AAAI

Conference on Artificial Intelligence. Association for Artificial Intelligence, 2006.

[156] Mirriam-webster’s online dictionary, cited April 2009.

http://www.merriam-webster.com/dictionary/success.

[157] Andrés Moreno, Niko Myller, Erkki Sutinen, and Mordechai Ben-Ari. Visualizing

programs with Jeliot 3. In AVI ’04: Proceedings of the working conference on

Advanced visual interfaces, pages 373–376, New York, NY, USA, 2004. ACM.

www.manaraa.com

239

[158] J. Morice. Skills and preferences: Learning from the Nintendo generation. In

International Workshop on Advanced Learning Technologies, New York, NY, USA,

2000. IWALT.

[159] Briana B. Morrison and Jon A. Preston. Engagement: gaming throughout the

curriculum. In SIGCSE ’09: Proceedings of the 40th ACM technical symposium on

Computer science education, pages 342–346, New York, NY, USA, 2009. ACM.

[160] Barbara Moskal, Deborah Lurie, and Stephen. Evaluating the effectiveness of a new

instructional approach. In SIGCSE ’04: Proceedings of the 35th SIGCSE technical

symposium on Computer science education, pages 75–79, New York, NY, USA, 2004.

ACM.

[161] Paul Mullins, Deborah Whitfield, and Michael Conlon. Using Alice 2.0 as a first

language. J. Comput. Small Coll., 24(3):136–143, 2009.

[162] Thomas L. Naps, Guido Rößling, Vicki Almstrum, Wanda Dann, Rudolf Fleischer,

Chris Hundhausen, Ari Korhonen, Lauri Malmi, Myles McNally, Susan Rodger, and

J. Ángel Velázquez-Iturbide. Exploring the role of visualization and engagement in

computer science education. In ITiCSE-WGR ’02: Working group reports from

ITiCSE on Innovation and technology in computer science education, pages 131–152,

New York, NY, USA, 2002. ACM.

[163] NetBeans, cited April 2009. http://www.netbeans.org/.

[164] Jill Van Newenhizen. The Borda Method is most likely to respect the Condorcet

Principle. Economic Theory, 2(1):69–83, 1992.

[165] Lijun Ni. What makes CS teachers change?: Factors influencing CS teachers’

adoption of curriculum innovations. In SIGCSE ’09: Proceedings of the 40th ACM

technical symposium on Computer science education, pages 544–548, New York, NY,

USA, 2009. ACM.

www.manaraa.com

240

[166] ObjectDraw Library, cited April 2009.

http://eventfuljava.cs.williams.edu/library/.

[167] Michael Olan. Dr. J vs. the bird: Java IDE’s one-on-one. J. Comput. Small Coll.,

19(5):44–52, 2004.

[168] M. Frank Pajares. Teachers’ beliefs and educational research: Cleaning up a messy

construct. Review of Educational Research, 62(3):307–332, 1992.

[169] Deniz Palak and Richard T. Walls. Teachers’ beliefs and technology practices: A

mixed-methods approach. Journal of Research on Technology in Education,

41(4):417–441, 2009.

[170] Brenda Parker and Ian Mitchell. Effective methods for learning: a study in

visualization. J. Comput. Small Coll., 22(2):176–182, 2006.

[171] James H. Paterson, John Haddow, and Michael Nairn. A design patterns extension

for the BlueJ IDE. In ITICSE ’06: Proceedings of the 11th annual SIGCSE

conference on Innovation and technology in computer science education, pages

280–284, New York, NY, USA, 2006. ACM.

[172] Andrew Patterson, Michael Kölling, and John Rosenberg. Introducing unit testing

with BlueJ. In ITiCSE ’03: Proceedings of the 8th annual conference on Innovation

and technology in computer science education, pages 11–15, New York, NY, USA,

2003. ACM.

[173] Michael Quinn Patton. Qualitative Evaluation and Research Methods. Sage

publications, Newbury Park, CA, 2nd edition, 1990.

[174] Arnold Pears, Stephen Seidman, Crystal Eney, Päivi Kinnunen, and Lauri Malmi.

Constructing a core literature for computing education research. SIGCSE Bull.,

37(4):152–161, 2005.

www.manaraa.com

241

[175] Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth Adams,

Jens Bennedsen, Marie Devlin, and James Paterson. A survey of literature on the

teaching of introductory programming. SIGCSE Bull., 39(4):204–223, 2007.

[176] Maureen L. Pope and Eileen M. Scott. Teacher Thinking Twenty Years on:

Revisiting Persisting Problems and Advances in Education, chapter Teachers’

epistemology and practice. Lisse:Swets and Zeitlinger, 2002.

[177] Kris Powers, Stacey Ecott, and Leanne M. Hirshfield. Through the looking glass:

teaching CS0 with Alice. In SIGCSE ’07: Proceedings of the 38th SIGCSE technical

symposium on Computer science education, pages 213–217, New York, NY, USA,

2007. ACM.

[178] Kris Powers, Paul Gross, Steve Cooper, Myles McNally, Kenneth J. Goldman, Viera

Proulx, and Martin Carlisle. Tools for teaching introductory programming: what

works? In SIGCSE ’06: Proceedings of the 37th SIGCSE technical symposium on

Computer science education, pages 560–561, New York, NY, USA, 2006. ACM.

[179] Colin B. Price. From Kandinsky to Java (the use of 20th century abstract art in

learning programming). Innovation in Teaching And Learning in Information and

Computer Sciences, 6(4):35–50, 2007.

[180] Colin B. Price, John Colvin, and Warren Wright. Introducing game development

into the computing curriculum - a progressive methodology. Innovation in Teaching

And Learning in Information and Computer Sciences, 5(3), 2006.

[181] Jeff Raab, Richard Rasala, and Viera K. Proulx. Pedagogical power tools for

teaching Java. In ITiCSE ’00: Proceedings of the 5th annual SIGCSE/SIGCUE

ITiCSEconference on Innovation and technology in computer science education,

pages 156–159, New York, NY, USA, 2000. ACM.

[182] Noa Ragonis and Mordechai Ben-Ari. On understanding the statics and dynamics of

object-oriented programs. In SIGCSE ’05: Proceedings of the 36th SIGCSE

www.manaraa.com

242

technical symposium on Computer science education, pages 226–230, New York, NY,

USA, 2005. ACM.

[183] Shri Rai, Kok Wai Wong, and Peter Cole. Game construction as a learning tool. In

CyberGames ’06: Proceedings of the 2006 international conference on Game

research and development, pages 231–236, Murdoch University, Australia, Australia,

2006. Murdoch University.

[184] Teemu Rajala, Mikko-Jussi Laakso, Erkki Kaila, and Tapio Salakoski. Effectiveness

of program visualization: A case study with the ViLLE tool. Journal of Information

Technology Education: Innovations in Practice, 7:15–32, 2008.

[185] Yolanda Rankin, Amy Gooch, and Bruce Gooch. The impact of game design on

students’ interest in CS. In GDCSE ’08: Proceedings of the 3rd international

conference on Game development in computer science education, pages 31–35, New

York, NY, USA, 2008. ACM.

[186] Richard Rasala, Jeff Raab, and Viera K. Proulx. Java Power Tools: Model software

for teaching object-oriented design. In SIGCSE ’01: Proceedings of the thirty-second

SIGCSE technical symposium on Computer Science Education, pages 297–301, New

York, NY, USA, 2001. ACM.

[187] Stuart Reges. The mystery of b := (b = false). ACM SIGCSE Bulletin, 40(1):21–25,

2008.

[188] Charles Reis and Robert Cartwright. A friendly face for Eclipse. In Eclipse ’03:

Proceedings of the 2003 OOPSLA workshop on eclipse technology exchange, pages

25–29, New York, NY, USA, 2003. ACM.

[189] Charles Reis and Robert Cartwright. Taming a professional IDE for the classroom.

In SIGCSE ’04: Proceedings of the 35th SIGCSE technical symposium on Computer

science education, pages 156–160, New York, NY, USA, 2004. ACM.

www.manaraa.com

243

[190] Renovating schools, cited April 2009.

http://www.nap.edu/html/techgap/nintendo.html.

[191] Mitchel Resnick and Brian Silverman. Some reflections on designing construction

kits for kids. In IDC ’05: Proceedings of the 2005 conference on Interaction design

and children, pages 117–122, New York, NY, USA, 2005. ACM.

[192] Lauren Rich, Heather Perry, and Mark Guzdial. A CS1 course designed to address

interests of women. In SIGCSE ’04: Proceedings of the 35th SIGCSE technical

symposium on Computer science education, pages 190–194, New York, NY, USA,

2004. ACM.

[193] Robotran, cited April 2009. http://www.prm.ucl.ac.be/robotran/indexEN.html.

[194] Ma. Mercedes T. Rodrigo, Ryan S. Baker, Matthew C. Jadud, Anna Christine M.

Amarra, Thomas Dy, Maria Beatriz V. Espejo-Lahoz, Sheryl Ann L. Lim,

Sheila A.M.S. Pascua, Jessica O. Sugay, and Emily S. Tabanao. Affective and

behavioral predictors of novice programmer achievement. In ITiCSE ’09:

Proceedings of the 14th annual ACM SIGCSE conference on Innovation and

technology in computer science education, pages 156–160, New York, NY, USA,

2009. ACM.

[195] E.M. Rogers. Diffusion of Innovations, 4th Edition. The Free Press, 1995.

[196] John Rosenberg and Michael Kölling. Testing object-oriented programs: Making it

simple. In SIGCSE ’97: Proceedings of the twenty-eigth SIGCSE technical

symposium on Computer science education, pages 77–81, New York, NY, USA, 1996.

ACM.

[197] Nathan Rountree, Janet Rountree, and Anthony Robins. Predictors of success and

failure in a CS1 course. ACM SIGCSE Bulletin, 38(1):121–124, 2002.

[198] Nathan Rountree, Janet Rountree, Anthony Robins, and Robert Hannah.

Interacting factors that predict success and failure in a CS1 course. In ITiCSE-WGR

www.manaraa.com

244

’04: Working group reports from ITiCSE on Innovation and technology in computer

science education, pages 101–104, New York, NY, USA, 2004. ACM.

[199] Dean Sanders and Brian Dorn. Classroom experience with Jeroo. J. Comput. Small

Coll., 18(4):308–316, 2003.

[200] Dean Sanders and Brian Dorn. Jeroo: a tool for introducing object-oriented

programming. In SIGCSE ’03: Proceedings of the 34th SIGCSE technical symposium

on Computer science education, pages 201–204, New York, NY, USA, 2003. ACM.

[201] Purvi Saraiya, Clifford A. Shaffer, D. Scott McCrickard, and Chris North. Effective

features of algorithm visualizations. SIGCSE Bull., 36(1):382–386, 2004.

[202] Dino Schweitzer and Wayne Brown. Interactive visualization for the active learning

classroom. In SIGCSE ’07: Proceedings of the 38th SIGCSE technical symposium on

Computer science education, pages 208–212, New York, NY, USA, 2007. ACM.

[203] Vijayakumar Shanmugasundaram, Paul Juell, Curt Hill, and Kendall Nygard.

Effectiveness of BlueJ in learning Java. In Craig Montgomerie and Jane Seale,

editors, Proceedings of World Conference on Educational Multimedia, Hypermedia

and Telecommunications 2007, pages 3776–3781, Vancouver, Canada, June 2007.

AACE.

[204] Robert H. Sloan and Patrick Troy. CS 0.5: a better approach to introductory

computer science for majors. In SIGCSE ’08: Proceedings of the 39th SIGCSE

technical symposium on Computer science education, pages 271–275, New York, NY,

USA, 2008. ACM.

[205] Elliot Soloway. How the Nintendo generation learns. Commun. ACM, 34(9):23–ff.,

1991.

[206] Robert E. Stake. Progressive focusing. cited April 2009, cited April 2009.

[207] Christine Stephensen. Educational Technology Associations as Change Agents: A

Case Study. PhD thesis, Oregon State University, 2007.

www.manaraa.com

245

[208] Zweben Stuart. PhD. production exceeds 1,700; undergraduate enrollment trends

still unclear. Computing Research News, 20(3), 2008.

[209] Jay Summet, Deepak Kumar, Keith O’Hara, Daniel Walker, Lijun Ni, Doug Blank,

and Tucker Balch. Personalizing CS1 with robots. In SIGCSE ’09: Proceedings of

the 40th ACM technical symposium on Computer science education, pages 433–437,

New York, NY, USA, 2009. ACM.

[210] SurveyMonkey, cited February 2009. http://www.msurveymonkey.com.

[211] Elizabeth Sweedyk and Robert M. Keller. Fun and games: a new software

engineering course. In ITiCSE ’05: Proceedings of the 10th annual SIGCSE

conference on Innovation and technology in computer science education, pages

138–142, New York, NY, USA, 2005. ACM.

[212] Charles Teddie and Abbas Tashakkori. Foundations of Mixed Methods Research:

Integrating quantitative and qualitative approaches in the social and behavior

sciences. Sage Publications, Inc., Thousand Oaks, CA, USA, 2009.

[213] Allison Elliot Tew, W. Michael McCracken, and Mark Guzdial. Impact of

alternative introductory courses on programming concept undersanding. In ICER

05: Proceedings of the 2005 international workshop on Computing education

research, 2005.

[214] Lynda Thomas, Mark Ratcliffe, John Woodbury, and Emma Jarman. Learning

styles and performance in the introductory programming sequence. SIGCSE Bull.,

34(1):33–37, 2002.

[215] Sheila Tobias. They’re Not Dumb, They’re Different, Stalking the Second Tier.

Research Corporation, a foundation for the advancement of science, 1990.

[216] Markku Tukiainen and Eero Monkkonen. Programming aptitude testing as a

prediction of learning to program. In Proceedings of the 14th Workshop of the

Psychology of Programming Interest Group, 2002.

www.manaraa.com

246

[217] Jaroslav Tulach, Rich Unger, and Timothy Boudreau. Decoupled design: building

applications on the NetBeans platform. Companion to the 21st ACM SIGPLAN

conference on Object-oriented programming languages, page 854, 2006.

[218] Jaime Urquiza-Fuentes and J. Ángel Velázquez-Iturbide. A survey of successful

evaluations of program visualization and algorithm animation systems. Trans.

Comput. Educ., 9(2):1–21, 2009.

[219] Jay Vegso. Enrollments and degree production at US CS departments drop further

in 2006-07. Computing Research News, 20(2), 2008.

[220] Tamar Vilner, Ela Zur, and Judith Gal-Ezer. Fundamental concepts of CS1:

procedural vs. object oriented paradigm - a case study. In ITiCSE ’07: Proceedings

of the 12th annual SIGCSE conference on Innovation and technology in computer

science education, pages 171–175, New York, NY, USA, 2007. ACM.

[221] Fang Wei, Sally H. Moritz, Shahida M. Parvez, and Glenn D. Blank. A student

model for object-oriented design and programming. J. Comput. Small Coll.,

20(5):260–273, 2005.

[222] Sandra Wescott. Effectiveness of using digital game playing in a first-level

programming course, 2008. D.P.S. Dissertation, Pace University.

[223] Keith J. Whittington. Infusing active learning into introductory programming

courses. J. Comput. Small Coll., 19(5):249–259, 2004.

[224] Richard Wicentowski and Tia Newhall. Using image processing projects to teach

CS1 topics. In SIGCSE ’05: Proceedings of the 36th SIGCSE technical symposium

on Computer science education, pages 287–291, New York, NY, USA, 2005. ACM.

[225] Susan Wiedenbeck. Factors affecting the success of non-majors in learning to

program. In ICER 05: Proceedings of the 2005 international workshop on

Computing education research, 2005.

www.manaraa.com

247

[226] Brenda Cantwell Wilson. A study of factors promoting success in computer science

including gender differences. Computer Science Education, 12(1):141 – 164, 2004.

[227] Brenda Cantwell Wilson and Sharon Schrock. Contributing to success in an

introductory computer science course: A study of twelve factors. ACM SIGCSE

Bulletin, 33(1):184–188, 2001.

[228] Shengli Wu and Fabio Crestani. Ranking retrieval systems with partial relevance

judgements. Journal of Universal Computer Science, 14(7):1020–1030, 2008.

[229] Stelios Xinogalos, Maya Satratzemi, and Vassilios Dagdilelis. Teaching Java with

BlueJ: a two-year experience. In ITiCSE ’07: Proceedings of the 12th annual

SIGCSE conference on Innovation and technology in computer science education,

pages 345–345, New York, NY, USA, 2007. ACM.

[230] Stelios Xinogalosa, Maya Satratzemia, and Vassilios Dagdilelisb. An introduction to

object-oriented programming with a didactic microworld: ObjectKarel. Computers

& Education, 47(2):148–171, 2004.

[231] Allan Yuen. Teaching computer programming: A connectionist view of pedagogical

change. Australian Journal of Education, 2000.

[232] Imran A. Zualkernan. Using Soloman-Felder Learning Style Index to Evaluate

Pedagogical Resources for Introductory Programming Classes. In ICSE ’07:

Proceedings of the 29th international conference on Software Engineering, pages

723–726, Washington, DC, USA, 2007. IEEE Computer Society.

[233] James E. Zull. The Art of Changing the Brain. Stylus Publishing, Sterling, VA,

2002.

